THE DESIGN OF THE UNIX®
OPERATING SYSTEM

Maurice J. Bach



THE DESIGN OF THE UNIX® OPERATING SYSTEM
by Maurice J. Bach

Original edition, entitled The Design of the Unix® Operating System by Maurice J. Bach, published
by Pearson Education, Inc., publishing as Prentice Hall.

Copyright © 1986 Pearson Education Inc., Upper Saddle River, New Jersey 07458, U.S.A.
ISBN-978-81-203-0516-8

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage
retrieval system, without permission from Pearson Education, Inc.

Indian edition published by PHI Learning Private Limited.

This edition is manufactured in India, and is authorized for sale in India, Pakistan, Sri Lanka, Bhutan,

Bangladesh, Nepal and the Maldives only.

Published by Asoke K. Ghosh, PHI Learning Private Limited, M-97, Connaught
Circus, New Delhi-110001 and Printed by Baba Barkha Nath Printers, Bahadurgarh,
Haryana-124507.



To my parents, for their patience and devotion,
to my daughters, Sarah and Rachel, for their laughter,
to my son, Joseph, who arrived after the first printing,
and to my wife, Debby, for her love and understanding.






CONTENTS

PREFACE .

CHAPTER 1 GENERAL OVERVIEW OF THE SYSTEM .

1.1
1.2
1.3
14
1.5
1.6

HISTORY

SYSTEM STRUCTURE

USER PERSPECTIVE

OPERATING SYSTEM SERVICES
ASSUMPTIONS ABOUT HARDWARE
SUMMARY

xi

14
15
18



CHAPTER 2 INTRODUCTION TO THE KERNEL

21

22
23
24
2.5
2.6

ARCHITECTURE OF THE UNIX OPERATING
SYSTEM

INTRODUCTION TO SYSTEM CONCEPTS
KERNEL DATA STRUCTURES . .
SYSTEM ADMINISTRATION

SUMMARY AND PREVIEW

EXERCISES . . .

CHAPTER 3 THE BUFFER CACHE

3.1
32
33
34
35

3.6
3.7

BUFFER HEADERS

STRUCTURE OF THE BUFFER POOL
SCENARIOS FOR RETRIEVAL OF A BUFFER
READING AND WRITING DISK BLOCKS

ADVANTAGES AND DISADVANTAGES OF THE BUFFER .

CACHE
SUMMARY . . . . . . « .,
EXERCISES

CHAPTER 4 INTERNAL REPRESENTATION OF FILES .

4.1
4.2
4.3
4,4
45
4.6
4.7
438

49

INODES

STRUCTURE OF A REGULAR FILE
DIRECTORIES e e e e
CONVERSION OF A PATH NAME TO AN INODE
SUPER BLOCK . .
INODE ASSIGNMENT TO A NEW FILE . . .
ALLOCATION OF DISK BLOCKS

OTHER FILE TYPES .

SUMMARY

4.10 EXERCISES .

19

19
22
34
34
36
37

38
39
40
42
53

56
57
58

60
61
67
73
74
76
77
84
88
88
89



CHAPTER 5 SYSTEM CALLS FOR THE FILESYSTEM . . . . . 91

510 OPEN . . . . v v v v v v i et e e e e 92
52 READ . . . . « v v v v v v v e e e e e . 9
53 WRITE . . . . . v v v v v v v v v v v « o101
54 FILEANDRECORDLOCKING . . . . . . . . . 103
5.5 ADJUSTING THE POSITION OF FILE I/0 — LSEEK . . 103
56 CLOSE . . . + + 4 « v« v « v v v s o v < . 103
57 FILECREATION . . . . . . . . . . « « . . . 105
58 CREATION OF SPECIALFILES . . . . . . . . . 107
5.9 CHANGE DIRECTORY AND CHANGE ROOT . . . . 109
5.10 CHANGE OWNER AND CHANGEMODE . . . . . . 110
511 STATANDFSTAT . . . . . . . « . +« « « . . 110
SI2 PIPES . . « ¢ v v ¢« v 4 4« o o o 4« v 4« . .1
503 DUP . v v v v v e e e e e e e . 117
5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS . . 119
505 LINK .« v v v v v v v v i a e e e e w128
506 UNLINK . . . « « ¢ v ¢ v v v 0 v o v o« .« 132
5.17 FILESYSTEM ABSTRACTIONS . . . . . . . . . 138
5.18 FILE SYSTEM MAINTENANCE - . . . . . . . . . 139
519 SUMMARY . . . « .+ v v v v v v o v« « . . 140
520 EXERCISES . . . &+ v v 4 v v « v « « « . . 140
CHAPTER 6 THE STRUCTURE OF PROCESSES . . . . . . . 146
6.1 PROCESS STATES AND TRANSITIONS . . . . . . . 147
6.2 LAYOUT OF SYSTEM MEMORY . . . . . . . . . 151
6.3 THE CONTEXTOFAPROCESS . . . . . . . . . . 159
6.4 SAVING THE CONTEXT OFAPROCESS . . . . . . 162
6.5 MANIPULATION OF THE PROCESS ADDRESS
SPACE . . « + « + « v v e e i e e e e .M
66 SLEEP . . . . .« v 4 v i u e e e e e e e . 182



6.7 SUMMARY
6.8 EXERCISES

CHAPTER 7 PROCESS CONTROL .

7.1
7.2
7.3
7.4
75
7.6
7.7

7.8

7.9

PROCESS CREATION

SIGNALS

PROCESS TERMINATION

AWAITING PROCESS TERMINATION .
INVOKING OTHER PROGRAMS

THE USER ID OF A PROCESS
CHANGING THE SIZE OF A PROCESS .
THE SHELL

SYSTEM BOOT AND THE INIT PROCESS .

7.10 SUMMARY .
7.11 EXERCISES

CHAPTER 8 PROCESS SCHEDULING AND TIME .
8.1 PROCESS SCHEDULING
8.2 SYSTEM CALLS FOR TIME
8.3 CLOCK .
8.4 SUMMARY .
8.5 EXERCISES

CHAPTER 9 MEMORY MANAGEMENT POLICIES
9.1 SWAPPING
9.2 DEMAND PAGING

9.3 A HYBRID SYSTEM WITH SWAPPING AND DEMAND
PAGING

9.4 SUMMARY
9.5 EXERCISES

viii

188
189

191
192
200
212
213
217
227
229
232
235
238
239

247
248
258
260
268
268

271
272

. 285

307
307
308,



CHAPTER 10 THEI/OSUBSYSTEM . . . . . . . . . . . . 312

10.1 DRIVER INTERFACES . . . + . . . . . . . . 313
10.2 DISK DRIVERS . .« + + + v v v o o v v . . . 325
103 TERMINALDRIVERS . . . . . . .+ . + . . . . 329
104 STREAMS . . « « + o v 4 v v e e e e . 34
105 SUMMARY . . . . « . . o o . oL ... . . 38
10.6 EXERCISES .« .+ « « v v v o v v v e e e . . 392
" CHAPTER 11 INTERPROCESS COMMUNICATION . . . . . . 355
111 PROCESSTRACING . . . . o v v v « v . . . 35
112 SYSTEMVIPC . . « . . . o v v o e . .. 359
113 NETWORK COMMUNICATIONS . . . . . . . . . 38
114 SOCKETS .« « « o « o v e e e e i e e o .. 383
115 SUMMARY . . . « « « « o« v w v . . . . . 388
116 EXERCISES . + « + o v v v o i e e o . . 389
CHAPTER 12 MULTIPROCESSOR SYSTEMS . . . . . . . . . 391
12.1 PROBLEM OF MULTIPROCESSOR SYSTEMS . . . . 392
12.2 SOLUTION WITH MASTER AND SLAVE
PROCESSORS . . « « « v v v o v v e e o v . 393
12.3 SOLUTION WITH SEMAPHORES . . . . . . . . . 395
124 THETUNIS SYSTEM . . . . . . + . + . . . . 410
12.5 PERFORMANCE LIMITATIONS . . . . . . . . . 410
126 EXERCISES . © « « v « v v v v e v e s . . 410
CHAPTER 13 DISTRIBUTED UNIX SYSTEMS . . . . . . . . 412
13.1 SATELLITE PROCESSORS . . . . . . . . . . . 414
13.2 THE NEWCASTLE CONNECTION . . . . . . . . 422
13.3 TRANSPARENT DISTRIBUTED FILE SYSTEMS . . , 426

134 A TRANSPARENT DISTRIBUTED MODEL WITHOUT STUB
PROCESSES . . + & v « « v v v v v v v . . 429

ix



135 SUMMARY . + . « v « v v v v v v v e w . . 430
136 EXERCISES . . + v v 4 v o n v v o v v . . 431

APPENDIX — SYSTEM CALLS . . . . « « + « + « « . . . 43
BIBLIOGRAPHY . .+ » + v o v v v o o e i o it . asa
INDEX . . + « o v v e e v e e e asB



PREFACE

The UNIX system was first described in a 1974 paper in the Communications of
the ACM [Thompson 74] by Ken Thompson and Dennis Ritchie. Since that time,
it has become increasingly widespread and popular thrcughout the computer
industry where more and more vendors are offering support for it on their
machines. It is especially popular in universities where it is frequently used for
operating systems research and case studies.

Many books and papers have described parts of the system, among them, two
special issues of the Bell System Technical Journal in 1978 [BSTJ 78] and 1984
[BLTJ 84). Many books describe the user level interface, particularly how to use
electronic mail, how to prepare documents, or how to use the command interpreter
called the shell; some books such as The UNIX Programming Environment
[Kernighan 84] and Advanced UNIX Programming [Rochkind 85] describe the
programming interface. This book describes the internal algorithms and structures
that form the basis of the operating system (called the kernel) and their
relationship to the programmer interface. It is thus applicable to several
environments. First, it can be used as a textbook for an operating systems course
at either the advanced undergraduate or first-year graduate level. It is most
beneficial to reference the system source code when using the book, but the book
can be read independently, too. Second, system programmers can use the book as a
reference to gain better understanding of how the kernel works and to compare
algorithms used in the UNIX system to algorithms used in other opcrating systems.

xi



xii PREFACE

Finally, programmers on UNIX systems can gain a deeper understanding of how
their programs interact with the system and thereby code more-efficient,
sophisticated programs.

The material and organization for the book grew out of a course that I prepared
and taught at AT&T Bell Laboratories during 1983 and 1984. While the course
centered on reading the source code for the system, I found that understanding the
code was easier once the concepts of the algorithms had been mastered. I have
attempted to keep the descriptions of algorithms in this book as simple as possible,
reflecting in a small way the simplicity and elegance of the system it describes.
Thus, the book is not a line-by-line rendition of the system written in English; it is
a description of the general flow of the various algorithms, and most important, a
description of how they interact with each other. Algorithms are presented in a C-
like  pseudo-code to aid the reader in understanding the natural language
description, and their names correspond to the procedure names in the kernel.
Figures depict the relationship between various data structures as the system
manipulates them. In later chapters, small C programs illustrate many system
concepts as they manifest themselves to users. In the interests of space and clarity,
these examples do not usually check far error conditions, something that should
always be done when writing programs. I have run them on System V; except for
programs that exercise features specific to System V, they should run on other
versions of the system, too.

Many exercises originally prepared for the course have been included at the end
of each chapter, and they are a key part of the book. Some exercises are
straightforward, designed to illustrate concepts brought out in the text. Others are
more difficult, designed to help the reader understand the system at a deeper level.
Finally, some are exploratory in nature, designed for investigation as a research
problem. Difficult exercises are marked with asterisks.

The system description is based on UNIX System V Release 2 supported by
AT&T, with some new features from Release 3. This is the system with which I
am most familiar, but I have tried to portray interesting contributions of other
variations to the operating system, particularly those of Berkeley Software
Distribution (BSD). I have avoided issues that assume particular hardware
characteristics, trying to cover the kernel-hardware interface in general terms and
ignoring particular machine idiosyncrasies. Where machine-specific issues are
important to understand implementation of the kernel, however, I delve into the
relevant detail. At the very least, examination of these topics will highlight the
parts of the operating system that are the most machine dependent.

The reader must have programming experience with a high-level language and,
preferably, with an assembly language as a prerequisite for understanding this
book. It is recommended that the reader have experience working with the UNIX
system and that the reader knows the C language [Kernighan 78]. However, I
have attempted to write this book in such a way that the reader should still be able
to. absorb the material without such background. The appendix contains a
simplified des‘lcription of the system calls, sufficient to understand the presentation
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in the book, but not a complete reference manual.

The book is organized as follows. Chapter 1 is the introduction, giving a brief,
general description of ‘system features as perceived by the user and describing the
system structure. Chapter 2 describes the general outline of the kernel architecture
and presents some basic concepts. The remainder of the book follows the outline
presented by the system architecture, describing the various components in a
building block fashion. It can be divided into three parts: the file system, process
control, and advanced topics. The file system is presented first, because its concepts
are easier than those for process control. Thus, Chapter 3 describes the system
buffer cache mechanism that is the foundation of the file system. Chapter 4
describes the data structures and algorithms used internally by the file system.
These algorithms use the algorithms explained in Chapter 3 and take care of the
internal bookkeeping needed for managing user files. Chapter 5 describes the
system calls that provide the user interface to the file system; they use the
algorithms in Chapter 4 to access user files.

Chapter 6 turns to the control of processes. It defines the context of a process
and investigates the internal kernel primitives that manipulate the process context.
In particular, it considers the system call interface, interrupt handling, and the
context switch. Chapter 7 presents the system calls that control the process
context. Chapter 8 deals with process scheduling, and Chapter 9 ¢overs memory.
management, including swapping and paging systems.

Chapter 10 outlines general driver interfaces, with specific discussion of disk
drivers and terminal drivers. Although devices are logically part of the file system,
their discussion is deferred until here because of issues in process control that arise
in terminal drivers. This chapter also acts as a bridge to the more advanced tepics
presented in the rest of the book. Chapter 11 covers interprocess communication
and networking, including System V messages, shared memory and semaphores,
and BSD sockets. Chapter 12 explains tightly coupled multiprocessor UNIX
systems, and Chapter 13 investigates loosely coupled distributed systems.-

The material in the first nine chapters could be covered in a one-semester course
on operating systems, and the material in the remaining chapters could be-covered
in advanced seminars with various projects being done in parallel.

A few caveats must be made at this time. No attempt has been made to
describe system performance in absolute terms, nor is there any attempt to suggest
configuration parameters for a system installation. Such data is likely to vary
according to machine type, hardware configuration, system version and
implementation, and application mix. Similarly, I have made a conscious effort to
avoid predicting future development of UNIX operating system features.
Discussion of advanced topics does not imply a commitment by AT&T to provide
particular features, nor should it even imply that particular areas are uncer
investigation.

" I. is my pleasure to acknowledge the assistance of many friends and colleagues
who encouraged me while I wrote this book. and provided constructive criticism of
the manuscript. My deepest appreciation goes to Ian Johnstone, who suggested:

7



xiv PREFACE

that I write this book, gave me early encouragement, and reviewed the earliest
draft of the first chapters. Ian taught me many tricks of the trade, and I will
always be indebted to him. Doris Ryan also had a hand in encouraging me from
the very beginning, and I will always appreciate her kindness and thoughtfulness.
Dennis Ritchie freely answered numerous questions on the historical and technical
background of the system. Many people gave freely of their time and energy to
review drafts of the manuscript, and this book owes a lot to their detailed
comments. They are Debby Bach, Doug Bayer, Lenny Brandwein, Steve Buroff,
Tom Butler, Ron Gomes, Mesut Gunduc, Laura Israel, Dean Jagels, Keith
Kelleman, Brian Kernighan, Bob Martin, Bob Mitze, Dave. Nowitz, Michael
Poppers, Marilyn Safran, Curt Schimmel, Zvi Spitz, Tom 'Vaden, Bill Weber,
Larry Wehr, and Bob Zarrow: Mary Fruhstuck provided help in preparing the
manuscript- for typesetting. I would like to thank my management for their
continued support throughout this project and my colleagues, for providing such a
stimulating atmosphere and wonderful work environment at AT&T Bell
Laboratories. John Wait and the staff at Prentice-Hall provided much valuable
assitance and advice to get the book into its final form. Last, but not least, my
wife, Debby, gave me lots of emotional support, without which I could never have
succeeded.



GENERAL OVERVIEW
OF THE SYSTEM

The UNIX system has become quite popular since its inception in 1969, running on
machines of varying processing power from microprocessors to mainframes and
providing a common execution environment across them. The system is divided
into two parts. The first part consists of programs and services that have made the
UNIX system environment so popular; it is the part readily apparent to users,
including such programs as the shell, mail, text processing packages, and source
code control systems. The second part consists of the operating system that
supports these programs and services. This book gives a detailed description of the
operating system. It concentrates on a description of UNIX System V produced by
AT&T but considers interesting features provided by other versions too. It
examines the major data structures and algorithms used in the operating system
that ultimately provide users with the standard user interface.

This chapter provides an introduction to the UNIX system. It reviews its
history and outlines the overall system structure. The next chapter gives a nfore
detailed introduction to the operating system.

1.1 HISTORY

‘I,n 1965, Bell Telephone Laboratories joined an effort with the General Electric
Company and Project MAC of the Massachusetts Institute of Technology to
, .



2 GENERAL OVERVIEW OF THE SYSTEM

develop a new operating system called Multics [Organick 72] The goals of the
Multics system were to provide simultaneous computer access to a large community
of users, to supply ample computation power and data storage, and to allow users to
share their data easily, if desired. Many people who later took part in the early
development of the UNIX system participated in the Multics work at Bell
Laboratories. Although a primitive version of the Multics system was running on a
GE 645 computer by 1969, it did not provide the general service computing for
which it was intended, nor was it clear when its development goals would be met.
Consequently, Bell Laboratories ended its participation in the project.
With the end of their work on the Multics project, members: of the Computing
Science Research Center at Bell Laboratories were left without a “convenient
interactive computing service” [Ritchie 84al. In an attempt to improve their
“programming environment, Ken Thompson, Dennis Ritchie, and others sketched a
paper design of a file system that later evolved into an early version of the UNIX
file system. Thompson wrote programs that simulated the behavior of the proposed
file system and of programs in a demand-paging environment, and he even encoded
a simple kernel for the GE 645 computer. At the same time, he wrote a game
program, “Space Travel,” in Fortran for a GECOS system (the Honeywell 635),
but the program was unsatisfactory because it was difficult to control the “space
ship” and the program was expensive to run. Thompson later found a little-used
. PDP-7 computer that provided good graphic display and cheap executing power.
. Programming “Space Travel” for the PDP-7 enabled Thompson to learn about the
machine, but its environment for program development required cross-assembly of
the program on the GECOS machine and carrying paper tape for input to the
PDP-7. To create a better development environment, Thompson and Ritchie
implemented their system design on the PDP-7, including an early version of the
UNIX file system, the process subsystem, and a small set of utility programs.
Eventually, the new system no longer needed the GECOS system as a development
environment but could support itself. The new system was given the name UNIX,
a pun on the name Multics coined by another member of the Computing Science
Research Center, Brian Kernighan.

Although this early version of the UNIX system held much promise, it could
not realize its potential until it was used in a real project. Thus, while providing a
text processing system for the patent department at Bell Laboratories, the UNIX
system was moved to a PDP-11 in 1971. The system was characterized by its small
size: 16K bytes for the system, 8K bytes for user programs, a disk of 512K bytes,
and a limit of 64K bytes per file. After its early success, Thompson set out to
implement a Fortran compiler for the new system, but instead came up with the
language B, influenced by BCPL [Richards 69]. B was an interpretive language
with the perfermance drawbacks implied by such languages, so Ritchie developed it
into one he called C, allowing generation of machine code, declaration of data
types, and definition of data structures. In 1973, the operating system was
rewritten in C, an unheard of step at the time, but one that was to have tremendous .
impact on its acceptance among outside users. The number of installations at Bell



1.1 HISTORY 3

Laboratories grew to about 25, and a UNIX Systems Group was formed to provide
internal support.

At this time, AT&T coyld not market computer products because of a 1956
Consent Decree it had signed. with the Federal government, but it provided the
UNIX system to universities who requested it for educational purposes. AT&T
neither advertised, marketed, nor supported the system, in adherence to the terms
of the Consent Decree. Nevertheless, the system’s popularity steadily increased. In
1974. Thompson and Ritchie published a paper describing the UNIX system in the
Communications of the ACM [Thompson 74], giving further impetus to its
acceptance. By 1977, the number of UNIX system sites had grown to about 500,
of which 125 were in universities. UNIX systems became popular in the operating
telephone companies, providing a good environment for program development,
network transaction operations services, and real-time services (via MERT
[Lycklama 78al). Licenses of UNIX systems were provided to commercial
institutions as well as universities. In 1977, Interactive Systems Corporation
became the first Value Added Reseller (VAR)! of a UNIX system, enhancing it
for use in office automation environments. 1977 also marked the year that the
UNIX system was first “ported” to a non-PDP machine (that is, made to run on
another machine with few or no changes), the Interdata 8/32.

With the growing popularity of midroprocessors, other companies ported the
UNIX system to new machines, but its simplicity and clarity tempted many
developers to enhance it in their own way, resulting in several variants of the basic
system. In the period from 1977 to 1982, Bell Laboratories combined several
AT&T variants into a single system, known commercially as UNIX System III.
Bell Laboratories later added several features to UNIX System III, calling thie new
product UNIX System V,2 and AT&T announced official support for System V in
January 1983. However, people at the University of California at Berkeley had
developed a variant to the UNIX system, the most recént version of which is called
4.3 BSD for VAX machines; providing some new, interesting features. This book -
will concentrate on the description-of UN¥X System V and will occasionally talk
about features proyided in the BSD system.

By the beginning of 1984, there were about 100,000 UNIX system installations
in the world, ruryung on machines with a wide range of computing power from
microprocessors to mainframes and on machines across different manufacturers’
product lines. No other operating system can make that claim. Several reasons
have been suggested for the popularity and success of the UNIX system.

1. Value Added Resellers add specific applications to a computer system to satisfy a particular market.
They market the applications rather than the operating system upon which they run.

2. What happened to System IV? An internal version of the system evolved into System V.
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o The system is written in a high-level language, making it easy to read,
understand, change, and move to other machines. Ritchie estimates that the
first system in C was 20 to 40 percent larger and slower because it was not
written in assembly language, but the advantages of using a higher-level
language far outweigh the disadvantages (see page 1965 of [Ritchie 78b]).

o It has a simple user interface that has the power to provide the services that
users want.

o It provides primitives that permit complex programs to be built from simpler
programs.

e It uses a hierarchical file system that allows easy maintenance and efficient
implementation.

o It uses a consistent format for files, the byte stream, making application
programs easier to write.

o It provides a simple, consistent interface to peripheral devices.

o It is a multi-user, multiprocess system; each user can execute several processes
simultaneously.

o It hides the machine architecture from the user, making it easier to write
programs that run on different hardware implementations.

The philosophy of simplicity and -consistency underscores the UNIX system and
accounts for many of the reasons cited above.

Although the operating system and many of the command programs are written
in C, UNIX systems support other languages, including Fortran, Basic, Pascal,
Ada, Cobol, Lisp, and Prolog. The UNIX system can support any language that
has a compiler or interpreter and a system interface that maps user requests for
operating system services to the standard set of requests used on UNIX systems.

1.2 SYSTEM STRUCTURE

Figure 1.1 depicts the high-level architecture qf the UNIX system. The hardware
at the center of the diagram provides the operating system with basic services that
will be described in Section 1.5. The operating system interacts directly® with the
hardware, providirg common services to programs and insulating them from
hardware idiosyncrasies. Viewing the system as a set of layers, the operating
system is commonly called the system kernel, or just the kernel, emphasizing its

3. In some implementations of the UNIX system, the operating system interacts with a native operating
system that, in turn, interacts with the underlying hardware and provides riecessary services to the
system. Such configurations allow installations to run other operating systems and their applications
in parallel to the UNIX system. The classic example of such a configuration is the MERT system
[Lycklama 78al. More recent configurations include implemeutations for IBM System/370
computers [Felton 84] and for UNIVAC 1100 Series computers [Bodenstab 84].
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Other application programs

Kernel

Hardware :

Other application programs
Figure 1.1. Architecture of UNIX Systems

isolation from user programs. Because programs are independent of the underlying
hardware, it is easy to move them between UNIX systems running on different
hardware if the programs do not make assumptions about the underlying hardware.
For instance, programs that assume the size of a machine word are more difficult to
move to other machines than programs that do not make this assumption.

Programs such as the shell and editors (ed and vi) shown in the outer layers
interact with the kernel by invoking a well defined set of system calls. The system
calls instruct the kernel to do various operations for the calling program and
exchange data between the kernel and the program. Several programs shown in the
figure are in standard system configurations and are known as commands, but
private fiser programs may also exist in this layer as indicated by the program
whose name is a.out, the standard name for executable files produced by the C
compiler. Other application programs can build on top of lower-level programs,
hence the existence of the outermost. layer in the figure. For example, the standard
C compiler, cc, is in the outermost layer of the figure: it invokes a C preprocessor,
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two-pass compiler, assembler, and loader (link-editor), all separate lower-level
programs. Although the figure depicts a two-level hierarchy of application
programs, users can extend the hierarchy to whatever levels are appropriate.
Indeed, the style of programming favored by the UNIX system encourages the
combination of existing programs to accomplish a task.

Many application subsystems and programs that provide a high-level view of the
system such as the shell, editors, SCCS (Source Code Control System), and
document preparation packages, have gradually become synonymous with the name
“UNIX system.” However, they all use lower-level services ultimately provided by
the kernel, and they avail themselves of these services via the set of system calls.
There are about 64 system calls in System V, of which fewer than 32 are used
frequently. They have simple options that make them easy to use but provide the
user with a lot of power. The set of system calls and the internal algorithms that
implement them form the body of the kernel, and the study of the UNIX operating
system presented in this book reduces to a detailed study and analysis of the system
calls and their interaction with one another. In short, the kernel provides the
services upon which all application programs in the UNIX system rely, and it
defines those services. This book will frequently use the terms “UNIX system,”
“kernel,” or “system,” but the intent is to refer to the kernel of the UNIX
operating system and should be clear in context.

1.3 USER PERSPECTIVE

This section briefly reviews high-level features of the UNIX system such as the file
system, the processing environment, and building block primitives (for . example,
pipes). Later chapters will explore kernel support of these features in detail.

1.3.1 The File System
The UNIX file system is characterized by

a hierarchical structure,

consistent treatment of file data,

the ability to create and delete files,

dynamic growth of files,

‘the protection of file data.

the treatment of peripheral devices (such as terminals and tape units) as files.

o 6 6 © © o

Thé file system is organized as a tree with a single root node called root (written
“/”); ‘every non-leaf node of the file system structure is a directory of files, and files
at the leaf nodes of the tree are either directories, regular files, or special device
files. The name of a file is given by a path name that describes how to locate the
file in the file system hierarchy. A path name is a sequence of component names
separated by slash characters; a component is a sequence of characters that
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/

fsl l:un/etc unix  dev
mjbmaury sh date who  passwd srAn tty00 ttyOl
cmd

datec who.c

Figure 1.2. Sample File System Tree

designates a file name that is uniquely contained in the previous (directory)
component. A full path name starts with a slash character and specifies afile that
can be found by starting at the file system root and traversing the file_tree,
following the branches that lead to successive component names of the path name.
Thus, the path names “/etc/passwd”, *“/bin/who”, and *“/usr/src/cmd/who.c”
designate files in the tree shown in Figure 1.2, but *“/bin/passwd” and
“/usr/src/date.c” do not. A path name does not have to start from root but can be
designated relative to the current directory of an executing process, by omitting the
initial slash in the path name. Thus, starting from directory *“/dev”, the path name
“tty01” designates the file whose full path name is “/dev/tty01”.

Programs in the UNIX system have no knowledge of the internal format in
which the kernel stores file data, treating the data as an unformatted stream of
bytes. Programs may interpret the byte stream as they wish, but the interpretation
has no bearing on how the operating system stores the data. Thus, the syntax of
accessing the data in a file is defined by the system and is identical for all
programs, but the semantics of the data are imposed by the program. For example,
the text formatting program troff expects to find “necw-line” characters at the end
of each line of text, and the system accounting program acctcom expects to find
fixed length records. Both programs use the same system services to access the
data in the file as a byte stream, and internally, they parse the stream into a
suitable format. If either program discovers that the format is incorrect, it is
responsible for taking the appropriate action.

Directories are like regular files in this respect; the system treats the data'in a
directory as a byte stream, but the data contains the names of the files in the
directory in a predictable format so that the operating system and programs such as
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Is (list the names and attributes of files) can discover the files in a-directory.

Permission to access a file is controlled by access permissions associated with
the file. Access permissions can be set independently to control read, write, and
execute permission for three classes of users: the file owner, a file group, and
everyone else. Users may create files if directory access permissions allow it. The
newly created files are leaf nodes of the file system directory structure.

To the user, the UNIX system treats devices as if they were files. Devices,
designated by special device files, occupy node positions in the file system directory
structure. Programs access devices with the samc syntax they use when accessing
regular files; the semantics of reading and writing devices are to a large degree the
same as reading and writing regular files. Devices are protected in the same way
that regular files are protected: by proper setting of their (file) access permissions.
Because device names look like the names of regular files and because the same
operations work for devices and regular files, most programs do not have to know
internally the types of files they manipulate.

For example, consider the C program in Figure 1.3, which makes a new copy of
an existing file. Suppose the name of the executable version of the program is
copy. A user at a terminal invokes the program by typing

copy oldfile newfile

where oldfile is the name of the existing file and newfile is the name of the new file.
The system invokes main, supplying argc as the number of parameters. in the list
argv, and initializing each member of the array argv to point to a user-supplied
parameter. In the example above, argc is 3, argvl0] points to the character string
copy (the program name is conventionally the Oth parameter), argv(l] points to the
character string oldfile, and argv[2] points to the character string newfile. The
program then checks that it has been invoked with the proper number of
parameters. If so, it invokes the. open system call “read-only” for the file oldfile,
and if the system call succeeds, invokes the creat system call to create newfile. The
permission modes on the newly created file will be 0666 (octal), allowing all users
access to the file for reading and writing. All system calls return —1 on failure; if
the open or creat calls fail, the program prints a message and calls the exit system
call with return status 1, terminating ‘its execution and indicating that something
went wrong.

The open and creat system calls return an integer called a file descriptor, which
the program uses for subsequent references to the files. The program then calls the
subroutine copy, which goes into a loop, invoking the read system call to read a
buffer’s worth of characters from the existing file, and invoking the write system
call to write the data to the new file. The read system call returns the number of
bytes read, returning 0 when it reaches the end of file. The program finishes the
loop when it encounters the end of file, or when there is some error on the read
system call (it does not check for write errors). Then it returns from copy and
exits with return status 0, indicating that the program completed successfully.
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#include <fcntlh>
char buffer[2048];
int version = 1; /* Chapter 2 explains this */

main(argc, argv)
int argc;
char *argvl];

int fdold, fdnew;

if (argc !=3)
{
printf("need 2 arguments for copy program\n");
exit(1);
)
fdold = open(argv(1], O RDONLY); /* open source file read only */
if (fdold == —1)
{
printf ("cannot open file %s\n", argv[1]);
exit(1);
)
fdnew = creat(argv[2]. 0666); /* create target file rw for all */
if fdnew == —1)
(
printf("cannot create file %s\n", argv[2]);
exit(1);
)
copy(fdold, fdnew);
exit(0);
1

copy(old, new) i
int old, new;
{

int count;

while ((count = read (old, buffer, sizeof (buffer))) > 0) .
write(new, buffer, count); '

Figure 1.3. Program to Copy a File

The program copies any files supplied to it as arguments, provided it has
permission to open the existing file and permission to create the new file. The file
can be a file of printable characters, such as the source code for the program, or it
can contain unprintable characters, even the program itself. Thus, the two
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invocations

COpy COpY.C Nnewcopy.c
Copy copy newcopy

both work. The old file can also be a directory. For instance,
copy dircontents

copies the contents of the current directory, denoted by the name *“.”, to a regular
file, “dircontents”; the data in the new file is identical, byte for byte, to the contents
of the directory, but the file is a regular file. (The system call mknod creates a
new directory.) Finally, either file can be a device special file. For example,

copy /dev/tty terminalread

reads the characters typed at the terminal (the special file /Mev/ity is the user’s
terminal) and copies them to the file terminalread, terminating only when the user
types the character control-d. Similarly,

copy /dev/tty /dev/tty

reads characters typed at the terminal and copies them back.

1.3.2 Processing Environment

A program is an executable file, and a process is an instance of the program in
execution. Many processes can execute simultaneously on UNIX systems (this
feature is sometimes called multiprogramming or multitasking) with no logical limit
to their number, and many instances of a program (such as copy) can exist
simultaneously in the system. Various system calls allow processes to create new
processes, terminate processes, synchronize stages of process execution, and control
reaction to various events. Subject to their use of system calls, processes execute
independently of each other.

For example, a process executing the program in Figure 1.4 executes the fork
system call to create a new process. The new process, called the child process, gets
a 0 return value from fork and invokes exec! to execute the program copy (the
program in Figure 1.3). The exec! call overlays the address space of the child
process with the file “copy”, assumed to be in the current directory, and runs the
program with the user-supplied parameters.  If the execl/ call succeeds, it never
returns because the process executes in a new address space, as will be seen in
Chapter 7. Meanwhile, the process that had invoked fork (the parent) receives a
non-0 return from the call, calls wait, suspending its execution until copy finishes,
prints the message “copy done,” and exits (every program exits at the end of its
main function, as arranged by standard C program libraries that are linked during

“the compilation process). For example, if the name of the executable program is
run, and a user invokes the program by
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main (argc, argv)
int argc;
char *argv(];

/* assume 2 args: source file and target file */
if (fork() === 0)

execl("copy", "copy", argv[1], argv[2], 0);
wait((int *) 0);
printf("copy done\n");

Figure 1.4. Program that Creates a New Process to Copy Files

run oldfile newfile

the process copies “oldfile” to “newfile” and prints out the message. Although this
program adds little to the “copy” program, it exhibits four major system calls used
for process control: fork, exec, wait, and, discreetly, exit.

Generally, the system calls allow users to write programs that do sophisticated
operations, and as a result, the kernel of the UNIX system does not contain many
functions that are part of the “kernel” in other systems. Such functions, including
-compilers and editors, are user-level programs in the UNIX system. The prime
example of such a program is the shell, the command interpreter program that
users typically execute after logging into the system. The shell interprets the first
word of a command line as a command name: for many commands, the shell forks
and the child process execs the command associated with the name, treating the
remaining words on the command line as parameters to the command.

The shell allows three types of commands. First, a command cap be an
executable file that contains object code produced by compilation of source code (a
C program for example). Second, a command can be an_executable file that
contains a sequence of shell command lines. Finally, a command can be an internal
shell command (instead of an executable file). The internal commands make the
shell a programming language in addition to a command interpreter and include
commands for looping (for-in-do-done and while-do-done), commands for
conditional execution (if-then-else-fi), a “case” statement command, a command to
change the current directory of a process (cd), and several others. The shell syntax
allows for pattern matching and parameter processing. Users execute commands
without having to know their types.

The shell searches for commands in a given sequence of directories, changeable
by user request per invocation of the shell. The shell usually executes a command
synchronously, waiting for the command to terminate before reading the next
command line. However, it also allows asynchronous execution, where it reads the
next command line and executes it without waiting for the prior command to
terminate. Commands executed asynchronously are said to execute in the
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background. For example, typing the command
who

causes the system to execute the program stored in the file binfwho,* which prints a
list of people who are currently logged in to the system. While who executes, the
shell waits for it to finish and then prompts the user for another command. By
typing ~

who &

the system executes the program who in the background, and the shell is ready to
accept another command immediately.

Every process executing in the UNIX system has an execution environment that
includes a current directory. The current directory of a process is the start
directory used for all path names that do not begin with the slash character. The
user may execute the shell command cd, change directory, to move around the file
system tree and change the current directory. The command line

cd /usr/src/uts

changes the shell’s current directory to the directory “/usr/src/uts”. The command
line

cd ../
changes the shell’s current directory to the directory that is two nodes “closer” to
the root node: the component “.” refers to the parent directory of the current
directory.

Because the shell is a user program and not part of the kernel, it is easy to
modify it and tailor it to a particular environment. For instance, users can use the
C shell to provide a history mechanism and avoid retyping recently used commands,
instead of the Bourne shell (named after its inventor, Steve Bourne), provided as
part of the standard System V release. Or some users may be granted use only of
a restricted shell, providing a scaled down version of the regular shell. The system
can execute the various shells simultaneously. Users have the capability to execute
many processes simultaneously, and processes can create other processes
dynamically and synchronize their execution, if desired. These features provide
users with a -powerful execution environment. Although much of the power of the
shell derives from its capabilities as a programming language and from its
capabilities for pattern matching of arguments, this section concentrates on the
process environment provided by the system via the shell. Other important shell

4. The directory “/bin” contains many useful commands and is usually included in the sequence of
directories the shell searches.
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features are beyond the scope of this book (see [Bourne 78] for a detailed
description of the shell).

1.3.3 Building Block Primitives

As described earlier, the philosophy of the UNIX system is to provide operating
‘system primitives that enable users to write small, modular programs that can be
used as building blocks to build more complex programs. One such primitive
visible to shell users is the capability to redirect I/0. Processes conventionally have
access to three files: they read from their standard input file, write to their
standard output file, and write error messages to their standard error file
Processes executing at a terminal typically use the terminal for these three files, but
each may be “redirected” independently. For instance, the command line

Is
lists all files in the current directory on the standard output, but the command line
Is > output

redirects the standard output to the file called “output” in the current directory,
using the creat system call mentioned above. Similarly, the command line

mail mjb < letter

opens the file “letter” for its standard intput and mails its contents to the user
named “mjb.” Processes can redirect input and output simultaneously, as in

nroff —mm < aocl > docl.out 2> errors

where the text formatter mroff reads the input file docl, redirects its standard
output to the file docl.out, and redirects error messages to the file errors (the
notation “2>” means to redirect the output for file descriptor 2, conventionally the
standard error). The programs /s, mail, and nroff do not know what file their
standard input, standard output, or standard error will be; the shell recognizes the
symbols “<”, “>", and “2>" and sets up the standard input, standard output,
and standard error appropriately before executing the processes.

The second building block primitive is the pipe, a mechanism that allows a
stream of data to be passed between reader and writer processes. Processes can
redirect their standard output to a pipe to be read by other processes that have
redirected their standard input to come from the pipe. The data that the first
processes write into the pipe is the input for the second processes. The second
processes could also redirect their output, and so on, depending on programming
need. Again, the processes need not know what type of file their standard output is;
they work regardless of whether their standard output is a regular file, a pipe, or a
device. When 'using the smaller programs as building blocks for a larger, more
complex program, the programmer uses the pipe primitive.and redirection of I/O to
.integrate the piece parts. Indeed, the system tacitly encourages such programming
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style so that new programs can work with existing programs.
For example, the program grep searches a set of files (parameters to grep) for a
given pattern:

grep main a.c b.c c.c

searches the three files a.c, b.c, and c.c for lines containing the string “main" and
prints the lines that it finds onto standard output. Sample output may be:

a.c: main(argc, argv)
c.c: /* here is the main loop in the program */
c.c: main()

The program wc with the option —l counts the number of lines in the standard
input file. The command line

grep main a.c b.c c.c| wc =1

counts the number of lines in the files that contain the string “main”; the output
from grep is “piped” directly into the wc command. For the previous sample
output from grep, the output from the piped command is

3

The use of pipes frequently makes it unnecessary to create temporary files.

1.4 OPERATING SYSTEM SERVICES

Figure 1.1 depicts the kernel layer immediately below the layer of user application
programs. The kernel performs various primitive operations on behalf of user
processes to support the user interface described above. Among the services
provided by the kernel are

e Controlling the execution of processes by allowing their creation, termination or
suspension, and communication

o Scheduling processes fairly for execution on the CPU. Processes share the CPU
in a time-shared manner: the CPU’ executes a process, the kernel suspends it
when its time quantum elapses, and the kernel schedules another process to
execute. The kernel later reschedules the suspended process.

o Allocating main memory for an executing process. The kernel allows processes
to share portions of their address space under certain conditions, but protects
the private address space of a process from outside tampering. If the system
runs low on free memory, the kernel frees memory by writing a process

5. Chapter 12 will consider multiprocessor systems; until then, assume a single processor model.
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temporarily to secondary memory, called a swap device. If the kernel writes
entire processes to a swap device, the implementation of the UNIX system 1s
called a swapping system; if it writes pages ot memory to a swap device, it is
called a paging system.

e Allocating secondary memory for efficient storage and retrieval of user data.
This service constitutes the file system. The kernel allocates secondary storage
for user files, reclaims unused storage, structures the file system in a well
understood manner, and protects user files from illegal access.

e Allowing processes controlled access to peripheral devices such as terminals,
tape drives, disk drives, and network-devices.

The kernel provides its services transparently. For example, it recognizes that a
given file is a regular file or a device, but hides the distinction from user processes.
Similarly, it formats data in a file for internal storage, but hides the internal format
from user processes, returning an unformatted byte stream. Finally, it offers
necessary services so that user-level processes can support the services they must
provide, while omitting services that can be implemented at the user level. For
example, the kernel supports the services that the shell needs to act as a command
interpreter: It allows the shell to read terminal input, to spawn processes
dynamically, to synchronize process execution, to create pipes, and to redirect 1/0.
Users can construct private versions of the shell to tailor their environments to their
specifications without affecting other users. These programs use the same kernel
services as the standard shell.

1.5 ASSUMPTIONS ABOUT HARDWARE

The execution of user processes on UNIX systems is divided into two levels: user
and kernel. When a process executes a system call, the execution mode of the
process changes from user mode to kernel mode: the operating system executes
and attempts to service the user request, returning an error code if it fails. Even'if
the user makes no explicit requests for operating system services, the operating
system still does bookkeeping operations that relate to the user process, handling
interrupts, scheduling processes, managing memory, and so on. Many machine
architectures (and their operating systems) support more levels than the two
outlined here, but the two modes, user and kernel, are sufficient for UNIX systems.
The differences between the two modes are

o Processes in user mode can access their own instructions and data but not kernel
instructions and data (or those of other processes). Processes in kernel mode,
however, can access kernel and user addresses. For example, the virtual address
space of a process may be divided between addresses that are accessible only in
kernel mode and addresses that are accessible in either mode. 7

e Some machine instructions are privileged and result in an error when-executed
in user mode. For example, a machine may contain an instruction that
manipulates the processor status register; processes executing in user mode
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Kernel Mode | K K
User Mode Ul|U

Figure 1.5. Multiple Processes and Modes of Execution

should not have this capability.

Put simply, the hardware views the world in terms of kernel mode and user mode
and does not distinguish among the many users executing programs in those modes.
The operating system keeps internal records to distinguish the many processes
executing on the system. Figure 1.5 shows the distinction: the kernel distinguishes
between processes A, B, C, and D on the«horizontal axis, and the hardware
distinguishes the mode of execution on the vertical axis.

Although the system executes in one of two modes, the kernel runs on behalf of
‘a user process. The kernel is not a separate set of processes that run in parallel to
‘user processes, but it is part of-each user process. The ensuing text will frequently
refer to “the kernel” allocating resources or “the kernel” doing various operations,
but what is meant is that a process executing in kernel mode allocates the resources
or does the various operations. For example, the shell reads user terminal input via
a system call: The kernel, executing on behalf of the shell process, controls the
operation of the terminal and returns the typed characters to the shell. The shell
then executes in user mode, interprets the character stream typed by the user, and
does the specified set of actions, which may require invocation of other system calls.

1.5.1 Interrupts and Exceptions

The UNIX system allows devices such as I/O peripherals or the system clock to
interrupt the CPU asynchronously. On receipt of the interrupt, the kernel saves its
current context (a frozen image of what the process was doing), determines the
cause of the interrupt, and services the interrupt. After the kernel services the
interrupt, it restores its interrupted context and proceeds as if nothing had
happened. The hardware usually prioritizes devices according to the order that
interrupts should be handled: When the kernel services an interrupt, it blocks out
lower priority interrupts but services higher priority interrupts.

An exception condition refers to unexpected events caused by a process, such as
addressing illegal memory, executing privileged instructions, dividing by zero, and
so on. They are distinct from interrupts,” which are caused by events that are
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external to a process. 'Exceptions happen “in the middle” of the execution of an
instruction, and the system attempts to restart the instruction after handling the
exception; interrupts are considered to happen between the execution of two
instructions, and the system continues with the next instruction after servicing the
interrupt. The UNIX system uses one mechanism to handle interrupts .and
exception conditions.

1.5.2 Processor Execution Levels

The kernel must sometimes prevent the occurrence of interrupts during critical
activity, which could result in corrupt data if interrupts were allowed. For instance,
the kernel may not want to receive a disk interrupt while manipulating linked lists,
because handling the interrupt could corrupt the pointers, as will be seen in the
‘next chapter. Computers typically have a set of privileged instructions that set the
processor.. execution level in the processor status word. Setting the processor
execution level to certain values masks off interrupts from that level and lower
levels, allowing only higher-level interrupts. Figure 1.6 shows a sample set of
execution levels. If the kernel masks out disk interrupts, all interrupts except for
clock interrupts and machine error interrupts are prevented. If it masks out
software interrupts, all other interrupts may occur.

Machine Errors.

Clock Higher Priority

Disk

Network Devices

Terminals Lower Priority

Software Interrupts l

Figure 1.6. Typical Interrupt Levels

1.5.3 Memory Management

The kernel permanently resides in main memory as does the currently executing
process (or parts of it, at least). When compiling a program, the compiler
generates a set of addresses in the program that represent addresses of variables
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and data structures or the addresses of instructions such as functions. The compiler
generates the addresses for a virtual machine as if no other program will execute
simultaneously on the physical machine. '

When the program is to run on the machine, the kernel aliocates space in main
memory for it, but the virtual addresses generated by the compiler need not be
identical to the physical addresses that they occupy in the machine. The kernel
coordinates with the machine hardware to set up a virtual to physical address
translation that maps the compiler-generated addresses to the physical machine
addresses. The mapping depends on the capabilities of the machine hardware, and
the parts of UNIX systems that deal with them are therefore machine dependent.
For example, some machines have special hardware to support demand paging.
Chapters 6 and 9 will discuss issues of memory management and how they relate to
hardware in more detail.

1.6 SUMMARY

This chapter has described the overall structure of the UNIX system, the
‘relationship between processes running in user mode versus kernel mode, and the
assumptions the kernel makes about the hardware. Processes execute in user mode
‘or kernel mode, where they avail themselves of system services using a well-defined
set of system calls. The system design encourages programmers to write small
programs that do only a few operations but do them well, and then to combine the
programs using pipes and 1/O redirection to do more sophisticated processing.

The system calls allow processes to do operations that are otherwise forbidden to
them. In addition to servicing system calls, the kernel does general bookkeeping for
the user community, controlling process scheduling, managing the storage and
protection of processes in main memory, fielding interrupts, managing files and
devices, and taking care of system error conditions. The UNIX system kernel
purposely omits many functions that are part of other operating systems, providing
a small set of system calls that allow processes to do necessary functions at user
level. The next chapter gives a more detailed introduction to the kernel, describing
its architecture and some basic concepts used in its implementation.



INTRODUCTION
TO THE KERNEL

The last chapter gave a high-level perspective of the UNIX system environment.
This chapter focuses on the kernel, providing an overview of its architecture and
outlining basic concepts and structures essential for understanding the rest of the
book.

2.1 ARCHITECTURE OF THE UNIX OPERATING SYSTEM

It has been noted (see page 239 of [Christian 83]) that the UNIX system supports
the illusions that the file system has “places” and that processes have “life.” The
two entities, files and processes, are the two central concepts in the UNIX system
model. Figure 2.1 gives a block diagram of the kernel, showing various modules
and their relationships to each other. In particular, it shows the file subsystem on
the left and the process control subsystem on the right, the two major components
of the kernel. The diagram serves as a useful logical view of the kernel, although
in practice -the kernel deviates from the model because some modules interact with
the internal operations of others.

Figure 2.1 shows three levels: user, kernel, and hardware. The system call and
library interface represent the border between user programs and the kernel
depicted in Figure 1.1. System calls look like ordinary function calls in T
programs, and libraries map these function calls to the primitives needed to enter

19
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Figure 2.1. . Block Diagram of the System Kernel

the operating system, as covered in more detail in Chapter 6. Assembly language
programs may invoke system calls directly without a system call library, however.
Praograms frequently use other libraries such as the standard 1/0 library to provide
-a, more sophisticated use of the system calls. The libraries are linked with the
programs at compile time and are thus part of the user program for. purposes of
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this discussion. An example later on will illustrate these points.

The figure partitions the set of system calls into those that interact with the file
subsystem and those that interact with the process control subsystem. The file
subsystem manages files, allocating file space, administering free space, controlling
access to files, and retrieving data for users. Processes interact with the file
subsystem via a specific set of system calls, such as open (to open a file for reading
or writing), close, read, write, stat (query the attributes of a file), chown (change
the record of who owns the file), and chmod (change the access permissions of a
file). These and others will be examined in Chapter 5.

The file subsystem accesses file data using a buffering mechanism that regulates
data flow between the kernel- and secondary storage devices. The buffering
mechanism interacts with block I/O device drivers to initiate data transfer to and
from the kernel. Device drivers are the kernel modules that control the operation
of peripheral devices. Block I/O devices are random access storage devices;
alternatively, their device drivers make them appear to be random access storagé
devices to the rest of the system. For example, a tape driver may allow the kernel
to treat a tape unit as a random access storage device. The file subsystem also
interacts directly with “raw” I/O device drivers without the intervention of a
buffering mechanism. Raw devices, sometimes-called character devices, include all
devices that are not block devices.

The process control subsystem is responsible for process synchronization,
interprocess communication, memory management, and process scheduling. The
file subsystem and the process control subsystem interact when loading a file into
memory for execution, as will be seen in Chapter 7: the process subsystem reads
executable files into memory before exccuting them.

Some of the system calls for controlling processes are fork (create a new
process), exec (overlay the image of a program onto the running process), exit -
(finish executing a process), wait (synchronize process execution with the exit of a
previously forked process), brk (control the size of memory -allocated to a process),
and signal (control process response to extraordinary events). Chapter 7 will
examine these system-calls and others.

The memory management module controls the allocation of memory. If at any
time the system does not have enough physical memory for all processes, the kernel
moves them between main memory and secondary memory so that all processes get
a fair chance to execute. Chapter 9 will describe two policies for managing
memory: swapping and demand paging. The swapper process is sometimes called
the scheduler, becziuie it “schedules” the allocation of memory for processes and
influences the operation of the CPU scheduler. However, this text will refer to it as
the swapper to avoid confusion with the CPU scheduler.

The scheduler module allocates the CPU to processes. It schedules them to run
in turn until they voluntarily relinquish the CPU while awaiting a resource or until
the kernel preempts them when their recent run time exceeds a time quantum. The
scheduler then chooses the highest priority eligible process to run; the original
process will run again when it is the highest priority eligible process available.
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There are several forms of interprocess communication, ranging from asynchronous
signaling of events to synchronous transmission-of messages between processes.
Finally, the hardware control is responsible for handling interrupts and for
ccmmunicating with the machine. Devices such as disks or terminals may interrupt
the CPU while a process is executing. If so, the kernel may resume execution of
the interrupted process after servicing the interrupt: Interrupts are not serviced by

special processes but by special functions in the kernel, called in the context of the
currently running process.

2.2 INTRODUCTION TO SYSTEM CONCEPTS

This section gives an overview of some major kernel data structures and describes
the function of modules shown in Figure 2.1 in more detail.

2.2.1 An Overview of the File Subsystem

The internal representation of a file is given by an inode, which contains a
description of the disk layout of the file data and other information sucn as the file
owner, access permissions, and access times. The term inode is a contraction of the
term index node and is commonly used in literature on the UNIX system. Every
file has one inode, but it may have several names, all ‘of which map into the inode.
Each name is called a link. When a process refers to a file by name, the kernel
parses the file name one component at a time, checks that the process has
permission to search the directories in the path, and eventually retrieves the inode
for the file. For example, if a process calls

open(*/fs2/mjb/rje/sourcefile”, 1);

the kernel retrieves the inode for */fs2/mjb/rje/sourcefile”. When a process
creates a new file, the kernel assigns it an unused inode. Inodes are stored in the
file system, as will be seen shortly, but the kernel reads them into an in-core! inode.
table when manipulating files.

The kernel contains two other data structures, the file table and the user file.
descriptor table. The file table is a global kernel structure, but the user file
descriptor table is allocated per process. When a process opens or creats a file, the
kernel allocates an entry from each table, corresponding to the file’s inode. Entries
in the three structures — user file descriptor table, file table, and inode table —
maintain the state of the file and the user’s access to it. The file table keeps track
of the byte offset in the file where the user’s next read or write will start, and the

1. The term core refers to primary memory of a machine, not to hardware technology.
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Figure 2.2. File Descriptors, File Table, and Inode Table

access rights allowed to the opening process. The user file descriptor table
identifies all open files for a process. Figure 2.2 shows the tables and their
relationship to each other. The kernel returns a file descriptor for the open. and
creat system calls, which is an index into the user file descriptor table. When
executing read and write system calls, the kernel uses the file descriptor to access
the user file descriptor table, follows pointers to the file table and inode table
entries, and, from the inode, finds the data in the file. Chapters 4 and 5. describe
these data structures in great detail. For now, suffice it to say that use of three
tables allows various degrees-of sharing access to a file.

The UNIX system keeps regular files and directories on block devices such as
tapes or disks. Because of the difference in access time between the two, few, if
any, UNIX system installations use tapes for their file systems. In coming years,
diskless work stations will be common, where files are located on a remote system
and accessed via a network (see Chapter 13). For simplicity, however, the ensuing
text assumes the use of disks. An instailation may have several physical disk units,
each containing. one or more file systems. Partitioning a disk into several file
systems makes it easier for administrators to manage the data stored there. The
kernel deals on a logical level with file systems rather than with disks, treating each
one as a logical device identified by a logical device number. The conversion
between logical device (file system) addresses and physical device (disk) addresses
is done by the disk driver. This book will use the term device to mean a logical
device unless explicitly stated otherwise.

A file system consists of a sequence of logical blocks, each containing 512, 1024,
2048, or any convenient multiple of 512 bytes, depending on the system
implementation. The size of a logical block is homogenecus within a file system but
may vary between different file systems in a system configuration. Using large
logical blocks increases the effective data transfer rate between disk and memory,
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because the kernel can transfer more data per disk operation and therefore make
fewer time-consuming operations. For example, reading 1K bytes from a disk in
one read operation is faster than reading 512 bytes twice. However, if a logical
block is too large, effective storage capacity may drop, as will be shown in Chapter
5. For simplicity, this book will use the term “block™ to mean a logical block, and
it will assume that a logical block contains 1K bytes of data unless explicitly stated
otherwise. ’

.............

inode list data blocks

boot super
block block

Figure 2.3. File System Layout

A file system has the following structure (Figure 2.3).

o The boot block occupies the beginning of a file system, typically the first sector,
and may contain the bootstrap code that is read into the machine to boot, or
initialize, the operating system. Although only one boot block is needed to boot
the system, every file system has a (possibly empty) boot block.

® The super block describes the state of a file system — how large it is, how
many files it can store, where to find free space on the file system, and other
information.

o The inode list is a list of inodes that follows the super block in the file system.
Administrators specify the size of the inode list when configuring a file system.
The kernel references inodes by index into the inode list. One inode is the root
inode of the file system: it is the inode by which the directory structure of the
file system is accessible after execution of the mount system call (Section 5.14).

e The data blocks start at the end of the inode list and contain file data and
administrative data. An allocated data block can belong to one and only one
file in the file system. '

2.2.2 Processes

This section examines the process subsystem more closely. It describes the
structure of a process and some process data. structures used for memory
management. Then it gives a preliminary view of the process state diagram and
considers various issues involved in some state transitions.

A process is the execution of a program and consists of a pattern of bytes that
the CPU interprets as machine instructions (called “text”), data, and stack. Many
processes appear to execute simultaneously as the kernel schedules them for
execution, and several processes may be instances of one program. A process
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executes by following a strict sequence of instructions that is self-contained and
does not jump to that of another process; it reads and writes its data and stack
sections, but it cannot read or write the data and stack of other . processes.
Ptocesses communicate with other processes and with the rest of the world via
system calls.

In practical terms, a process on a, UNIX system is the entity that is created by
the fork system call. Every process except process 0 is created when another
process executes the fork system call. The process that invoked the fork system
call is the parent process, and the newly created process is the child process. Every
process ‘has one parent process, but a process can have many child processes. The
kernel identifies each process by its process number, called the process ID (PID).
Process 0 is a special process that is created “by hand” when the system boots;
after forking a child process (process 1), process 0 becomes the swapper process.
Process 1, known as init, is the ancestor of every other process in the system and
enjoys a special relationship with them, as explained in Chapter 7.

A user compiles the source code of a program to create an executable file, which
consists of several parts:

o a set of “headers” that describe the attributes of the file,

o the program text,

e a machine language representation of data that has initial values when the
program starts execution, and an indication of how much space the kernel
should allocate for uninitialized data, called bss? (the kernel initializes it to O at
run time),

e other sections, such as symbol table information.

For the program in Figure 1.3, the text of the executable file is the generated code
for the functions main and copy, the initialized data is the variable version (put
into the program just so that it should have some initialized data), and the
uninitialized data is the array buffer. System V versions of the C compiler create a
separate text section by default but support an option that allows inclusion of
program instructions in the data section, used in older versions of the system.

The kernel loads an executable file into memory during an exec system call, and
the loaded process consists of at least three parts, called regions: text, data, and
the stack. The text and data regions correspond to the text and data-bss sections of
the executable file, but the stack region is automatically created and its size is
dynamically adjusted by the kernel at run time. The stack consists of logical stack
frames that are pushed when calling a function and popped when returning; a
special register called tke stack pointer indicates the current stack depth. A stack

2. The name bss comes from an assembly pseudo-operator on the IBM 7090 machine, which stood for
“block started by symbol.”
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frame contains the parameters to a function, its local variables, and the data
necessary to recover the previous stack frame, including the value of the program
counter and stack pointer at the time of the function call. The program code
contains instruction sequences that manage stack growth, and the kernel allocates
space for the stack, as needed. In the program in Figure 1.3, parameters argc and
argv and variables fdold and fdnew in the function main appear on the stack when
main is called (once in every program, by convention), and parameters old and new
and the variable count in the function copy appear on the stack whenever copy is
called.

Because a process in the UNIX system can execute in two modes, kernel or
user, it uses a separate stack for each mode. The user stack contains the
arguments, local variables, and other data for functions executing in user mode.
The left side of Figure 2.4 shows the user stack for a process when it makes the
write system call in the copy program. The process startup procedure (included in
a library) had called the function main with two parameters, pushing frame 1 onto
the user stack; frame 1 contains space for the two local variables of main. Main
then called copy with two parameters, old and new, and pushed frame 2 onto the
user stack; frame 2 contains space for the local variable count. Finally, the process
" invoked the system call write by invoking the library function write. Each system
call has an entry point in a system call library; the system call library is encoded in
assembly language and contains special trap instructions, which, when executed,
cause an “interrupt” that results in a hardware switch to kernel mode. A process
calls the library entry point for a particular system call just-as it calls any function,
creating a stack frame for the library function. When the process executes the
special instruction, it switches mode to the kernel, executes kernel code, and uses
the kernel stack.

The kernel stack contains the stack frames for functions executing in kernel
-mode. The function and data entries on the kernel stack refer to functions and
dzata in the kernel, not the user program, but its construction is the same as that of
the user stack. The kernel stack of a process is null when the process executes in
user mode. The right side of Figure 2.4 depicts the kernel stack representation for
a process executing the write system call in the copy program. The names of the
algorithms are described during the detailed discussion of the write system call in
later chapters.

Every process has an entry in the kernel process table, and each process is
allocated a u area® that contains private data manipulated only by the kernel.. The
. process table contains (or points to) a per process region table, whose entries point
to entries in a region table. A region is a contiguous area of a process’s address

3. The u in u area stands for “user.”” Another name for the u area is u block; this book will always
refer to it as the u area.
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Figure 2.5. Data Structures for Processes

space, such as text, data, and stack. Region table entries describe the attributes-of
the region, such as whether it contains text or data, whether it is shared or private,
and where the “data” of the region is located in memory. The extra level of
indirection (from the per process region table to the region table) allows
independent processes to share regions. When a process invokes the exec system
call, the kernel allocates regions for its text, data, and stack after freeing the old
regions the process had been using. When a process invokes fork, the kernel
duplicates the address space of the old process, allowing processes to share regions
when possible and making a physical copy otherwise. When a process invokes exit,
the kernel frees the regions the process had used. Figure 2.5 shows the relevant
data structures of a running process: The process table points to a per process
region table with pointers to the region table entries for the text, data, and stack
regions of the process.

‘The process table entry and the u area contain control and status information
about the process. The u area is an extension of the process table entry, and
Chapter 6 will examine the distinction between the two tables. Fields in the
process table discussed in the following chapters are

e a state field,
e identifiers indicating the user who owns the process (user IDs, or UIDs),
e an event descriptor set when a process is suspended (in the sleep state).

The u area contains information describing the process that needs to be
accessible only when the process is executing. The important fields are
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e a pointer to the process table slot of the currently executing process,
o parameters of the current system call, return values and error codes,
file descriptors for all open files,

internal 1/0 parameters,

current directory and current root (see Chapter 5),

process and file size limits.

The kernel can directly access fields of the u area of the executing process but not
of the u area of other processes. Internally, the kernel references the structure
variable u to access the u area of the currently running process, and when another
process executes, the kernel rearranges its virtual address space so that the
steucture u refers to the u area of the new process. The implementation gives the
kernel an easy way to identify the current process by following the pointer from the
u area to its process table entry.

2.2.2.1 Context of a process

The context of a process is its state, as defined by its text, the values of its global
user variables and data structures, the values of machine registers it uses, the
values stored in its process table slot and u area, and the contents of its user and
kernel stacks. The text of the operating system and its global data structures are
shared by all processes but do not constitute part of the context of a process.

When executing a process, the system is said to be executing in the context of
the process. When the kernel decides that it should execute another process, it does
a context switch, so that the system executes in the context of the other process.
The kernel allows a context switch only under specific conditions, as will be seen.
When doing a context switch, the kernel saves enough information so that it can
later switch back to the first process and resume its execution. Similarly, when
moving from user to kernel mode, the kernel saves enough information so that it
can later return to user mode and continue execution from where it left off.
Moving between user and kernel mode is a change in mode, not a context switch.
Recalling Figure 1.5, the kernel does a context switch when it changes context from
process A to process B; it changes execution mode from user to kernel or from
kernel to user, still executing in the context of one process, such as process A.

The kernel services interrupts in the context of the interrupted process even
though it may not have caused the interrupt. The interrupted process may have
been executing in user mode or in kernel mode. The kernel saves enough
information so that it can later resume execution of the interrupted process and
services the interrupt in kernel mode. The kernel does not spawn or schedule a
special process to handle interrupts.
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2.2.2.2 Process states

The lifetime of a process can be divided into a set of states, each with certain
characteristics that describe the process. Chapter 6 will describe all process states,
but it is essential to understand the following states now:

1. The process is currently executing in user mode.

2. The process is currently executing in kernel mode.

3. The process is not executing, but it is ready to run as soon as the scheduler
chooses it. Many processes may be in this state, and the scheduling
algorithm determines which one will execute next.

4. The process is sleeping. A process puts itself to sleep when it can no longer
continue executing, such as when it is waiting for I/0O to complete.

Because a processor can execute only one process at a time, at most one process
may be in states 1 and 2. The two states correspond to the two modes of execution,
user and kernel.

2.2.2.3 State transitions

The process states described above give a static view of a process, but processes
move continuously between the states according to well-defined rules. A srate
transition diagram is a directed graph whose nodes represent the states a process
can enter and whose edges represent the events that cause a process to move from
one state to another. State transitions are legal between two states if there exists
an edge from the first state to the second. Several transitions may emanate from a
state, but a process will follow one and only one transition depending on the system
event that occurs. Figure 2.6 shows the state transition diagram for the process
states defined above.

Several processes can execute simultaneously in a time-shared manner, as stated
earlier, and they may all run simultaneously in kernel mode. If they were allowed
to run in kernel mode without constraint, they could corrupt global kernel data
structures. By prohibiting arbitrary context switches and controlling the occurrence
of interrupts, the kernel protects its consistency.

The kernel allows a context switch only when a process moves from the state
“kernel running” to the state “asleep in memory.” Processes running in kernel
mode cannot be preempted by other processes; therefore the kernel is sometimes
said to be non-preemptive, although the system does preempt processes that are in
user mode. The kernel maintains consistency of its data structures because it is
non-preemptive, thereby solving the mutual exclusion problem — making sure that
critical sections of code are executed by at most one process at a time.

For instance, consider the sample code in Figure 2.7 to put a data structure,
whose address is in the pointer bpl, onto a doubly linked list after the structure
whose address is in bp. If the system aliowed a context switch while the kernel
executed the code fragment, the following situation could occur. Suppose the
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kernel executes the code until the comment and then does a context switch. The
doubly linked list is in an inconsistent state: the structure bpl is half on and half
off the linked list. If a process were to follow the forward pointers, it would find
bpl on the linked list, but if it were to follow the back pointers, it would not find
bpl (Figure 2.8). If other processes were to manipulate the pointers on the linked
list before the original process ran again, the structure of the doubly linked list
could be permanently destroyed. The UNIX system prevents such situations by
disallowing context-switches when a process executes in kernel mode. If a process
goes to sleep, thereby permitting a context switch, kernel algorithms are encoded to
make sure that system data structures are in a safe, consistent state.

A related problem that can cause inconsistency in kernel data is the handling of
interrupts, which can change kernel state information. For example, if the kernel
was executing the code in Figure 2.7 and received an interrupt when it reached the
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struct queue {

) *bp, *bpl;

bpl—>forp = bp—>forp;

bpl—> backp = bp;

bp—>forp = bpl;

/* consider possible context switch here */
bpl —>forp—>backp = bpl;

Figure 2.7. Sample Code Creating Doubly Linked List

bpl
—a N
bp
S e———
Placing bpl on doubly linked list
— bpl —

TN
Figure 2.8. Incorrect Linked List because of Context Switch

comment, the interrupt handler could corrupt the links if it manipulates the
pointers, as illustrated earlier. To solve this problem, the system could prevent all
interrupts while executing in kernel mode, but that would delay servicing of the
interrupt, possibly hurting system throughput. Instead, the kernel raises the
processor execution level to prevent interrupts when entering critical regions of
code. A section of code is critical if execution of arbitrary interrupt handlers could
result in consistency problems. For example, if a disk interrupt handler
manipulates the buffer queues in the figure, the section of code where the kernel
manipulates the buffer queues is a critical region of code with respect to the disk
interrupt handler. Critical regions are small and infrequent so that system’
throughput is largely unaffected by their existence. Other operating systems solve
this problem by preventing all interrupts when executing in system states or by
using elaborate locking schemes to ensure consistency. Chapter 12 will return to
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this issue for multiprocessor systems, where the solution outlined here is insufficient.

To review, the kernel protects its consistency by allowing a context switch only
when a process puts itself to sleep and by preventing one process from changing the
state of another process. It also raises the processor execution level around critical
regions of code to prevent interrupts that could otherwise cause inconsistencies.
The process scheduler periodically preempts processes executing in user mode so
that processes cannot monopolize use of the CPU. '

2.2.2.4 Sleep and wakeup

A process executing in kernel mode has great autonomy in deciding what it is going
to do in reaction to system events. Processes can communicate with each other and
“suggest” various alternatives, but they make the final decision by themselves. As
will be seen, there is a set of rules that processes obey when confronted with various
circumstances, but each process ultimately follows these rules under its own
initiative. For instance, when a process .must temporarily suspend its execution
(“go to sleep”), it does so of its own free will. Consequently, an interrupt handior
cannot go to sleep, because if it could, the interrupted process would be put to sleep
by default.

Processes go to sleep because they are awaiting the occurrence of some event,
such as waiting for I/0 completion from a peripheral device, waiting for a prosess
to exit, waiting for system resources to become available, and so on. Processes are
said to sleep on an event, meaning that they are in the sleep state until the event
occurs, at which time they wake up and enter the state “ready to run.”” Many
processes can simultaneously sleep on an event; when an event occurs, all processes
sleeping on the event wake up because the event condition is no longer true. When
a process wakes up, it follows the state transition from the “sleep” state to the
“ready-to-run” state, where it is eligible for later scheduling; it does not execute
immediately. Sleeping processes do not consume CPU resources: The kernel does
not constantly check to see that a process is still sleeping but waits for the event to
occur and awakens the process then.

For example, a process executing in kernel mode must sometimes lock a data
structure in case it goes to sleep at a later stage; processes attempting to
manipulate the locked structure must check the lock and sleep if another process
owns the lock. The kernel implements such locks in the following manner:

while (condition is true)
sleep (event: the condition becomes false);
set condition true;

It unlocks the lock and awakens all processes asleep on the lock in the following
manner:
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set condition false;
wakeup (event: the condition is false);

Figure 2.9 depicts a scenario where three processes, A, B, and C, contend for a
locked buffer. The sleep condition is that the buffer is locked. The processes
execute one at a time, find the buffer locked, and sleep on the event that the buffer
becomes unlocked. Eventually, the buffer is unlocked, and all processes wake up
and enter the state “ready to run.” The kernel eventually chooses one process, say
B, to execute. Process B executes the ‘“while” loop, finds that the buffer is
unlocked, sets the. buffer lock, and proceeds. If process B later goes to sleep again
before unlocking the buffer (waiting for completion of an I/O operation, for
example), the kernel can schedule other processes to run. If it chooses process A,
process A executes the “while” loop, finds that the buffer is locked, and goes to
sleep again; process C may do the same thing. Eventually, process B awakens and
unlocks the buffer, allowing either process A or C to gain access to the buffer.
Thus, the “while-sleep” loop insures that at most one process can gain access to a
resource.

Chapter 6 will present the algorithms for sleep and wakeup in greater detail. In
the meantime, they should be considered “atomic”* A process enters the sleep state
instantaneously and stays there until it wakes up. After it goes to sleep, the kernel
schedules another process to run and switches context to it.

2.3 KERNEL DATA STRUCTURES

Most kernel data structures occupy fixed-size tables rather than dynamically
allocated space: The advantage of this approach is that the kernel code is simple,
but it limits the. number of entries for a data structure to the number that was
originally configured when generating the system: If, during operation of the
system, the kernel should run out of entries for a data structure, it cannot allocate
space for new entries dynamically but must report an efror to the requesting user.
If, on the other hand, the kernel is configured so that it it is unlikely to run out of
table space, the extra table space may be wasted because it cannot be used for
other purposes. Nevertheless, the simplicity of the kernel algorithms has generally
been considered more important than the need to squeeze out every last byte of
main memory. Algorithms typically use simple loops to find free table entries, a
method that is easier to understand and sometimes more efficient than more
complicated allocation schemes.

2.4 SYSTEM ADMINISTRATION

Administrative processes are loosely classified as those processes that do various
functions for the general welfare of the user community. Such functions include
disk formatting. creation of new file systems, repair of damaged file systems, kernel
debugging, and others. Conceptually, there is no difference between administ:ative.
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processes and user processes: They use the same set of system calls available to the
general community. They are distinguished from general user processes only in the
rights and privileges they are allowed. For example, file permission modes may
allow administrative processes to manipulate files otherwise off-limits to general
users. Internally. the kernel distinguishes a special user called the superuser,
endowing it with special privileges, as will be seen. A user may become a superuser
by going through a login-password sequence or by executing special programs.
Other uses of superuser privileges will be studied in later chapters. In short, the
kernel does not recognize a separate class of administrative processes.

2.5 SUMMARY AND PREVIEW

This chapter has described the architecture of the kernel; its two major components
are the file subsystem and the process subsystem. The file subsystem controls the
storage and retrieval of data in user files. Files are organized into file systems,
which are treated as logical devices; a physical device such as a disk can contain
several logical devices (file systems). Each file system has a super block that
describes the structure and contents of the file system, and each file in a file system
is described by an inode that gives the attributes of the file. System calls that
manipulate files do so via inodes.

Processes exist in various states and move between them according to well-
defined transition rules. In particular, processes executing in kernel mode can
suspend their execution and enter the sleep state, but no process can put another
process to sleep. The kernel is non-preemptive, meaning that a process executing in
kernel mode will continue to execute until it enters the sleep state or until it returns
to execute in user mode. The kernel maintains the consistency of its data
structures by enforcing the policy of non-preemption and by blocking interrupts
when executing critical regions of code.

The remainder of this text describes the subsystems shown in Figure 2.1 and
their interactions in detail, starting with the file subsystem and continuing with the
process subsystem. The next chapter covers the buffer cache and describes buffer
allocation algorithms, used in the algorithms presented in Chapters 4, 5, and 7.
Chapter 4 examines internal algorithms of the file system, including the
manipulation of inodes, the structure of files, and the conversion of path names to
inodes. Chapter 5 explains the system calls that use the algorithms in Chapter 4 to
-access the file system, such as open, close, read, and write. Chapter 6 deals with
the basic ideas of the context of a process and its address space, and Chapter 7
covers system calls that deal with process management and use the algorithms in
Chapter 6. Chapter 8 examines process scheduling, and - Chapter 9 discusses
memory management algorithms. Chapter 10 covers device drivers, postponed to
this point so that the relationship between the terminal driver and process
management can be explained. Chapter 11 presents several forms of interprocess
communication. Finally, the last two chapters cover advanced topics, including
multiprocessor systems and distributed systems.
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2.6 EXERCISES
1. Consider the following sequence of commands:

grep main a.c b.c c.c > grepout &
wc =] < grepout &
rm grepout &

The ampersand (“&") at the end of each command line informs the shell to run the
command in the background, and it can execute each command line in parallel. Why
is this not equivalent to the following command line?

grep main a.c b.c c.c| we —1

2. Consider the sample kernel code in Figure 2.7. Suppose a context switch happens
when the code reaches the comment, and suppose another process removes-a bufter
from the linked list by executing the following code:

remove(qp)
struct queue *qp;
{

qp—>forp—>backp = qp—> backp;

qp—>backp—>forp = qp— > forp;

qp—>forp = qp—>backp = NULL;
)

Consider three cases:
— The process removes the structure bp! from the linked list.
— The process removes the structure that currently follows bp! on the linked list.
— The process removes the structure that originally followed bp! before bp was half
placed on the linked list.
What is the status of the linked list after the original process completes executing the
code after the comment?
3. What should happen. if the kernel attempts to awaken all processes sleeping on an
event, but no processes are asleep on the event at the time of the wakeup?



THE BUFFER
CACHE

As mentioned in the previous chapter, the kernel maintains files on mass storage
devices such as disks, and it allows processes to store new information or to recall
previously stored information. When a process wants to access data from a file, the
kernel brings the data into main memory where the process can examine it, alter it,
and request that the data be saved in the file system again. For example, recall the
copy program in Figure 1.3: The kernel reads the data from the first file into
memory, and then writes the data into the second file. Just as it must bring file.
data into memory, the kernel must also bring auxiliary data into memory to
manipulate it. For instance, the super block of a file system describes the free
space available on the file system, among other things. The kernel reads the super
block into memory to access its data and writes it back to the file system when it
wishes to save its data. Similarly, the.inode describes the layout of a file. The
kernel reads an inode into memory when it wants to access data in a file and writes
the inode back to the file system when it wants to update the file layout. It
manipulates this auxiliary data without the explicit knowledge or request of running
processes.

The kernel could read and write directly to and from the disk for all file system
accesses, but system response time and throughput would be poor because of the
slow disk transfer rate. The kernel therefore attempts to minimize the frequency of
disk access by keeping a pool of internal data buffers, called the buffer cache,’
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which contains the data in recently used disk blocks.

Figure 2.1 showed the position of the buffer cache module in the kernel
architecture between the file subsystem and (block) device drivers. When reading
data from the disk, the kernel attempts to read from the buffer cache. If the data
is already in the cache, the kernel does not have to read from the disk. If the data
is not in the cache, the kernel reads the data from the disk and caches it, using an
algorithm that tries to save as much good data in the cache as possible. Similarly,
data being written to disk is cached so that it will be there if the kernel later tries
to read it. The kernel also attempts to minimize the frequency of disk write
operations by determining whether the data must really be stored on disk or
whether it is transient data that will soon be overwritten. Higher-level kernel
algorithms instruct the buffer cache module to pre-cache data or to delay-write
data to maximize the caching effect. This chapter describes the algorithms the
kernel uses to manipulate buffers-in the buffer cache.

3.1 BUFFER HEADERS

During system initialization, the kernel allocates space for a number of buffers,
configurable according to memory size and system performance constraints. A
buffer consists of two parts: a memory array that contains data from the disk and
a buffer header that identifies the buffer. Because there is a one to one mapping of
buffer headers to data arrays, the ensuing text will frequently refer to both parts as
a “buffer,” and the context should make clear which part is being discussed.

The data in a buffer corresponds to the data in a logical disk block on a file
system, and the kernel identifies the buffer contents by examining identifier fields in
the buffer header. The buffer is the in-memory copy of the disk block; the contents
of the disk block map into the buffer, but the mapping is temporary until the kernel
decides to map another disk block into the buffer. A disk block can never map into
more than one buffer at a time. If two buffers were to contain data for one disk
block, the kernel would not know which buffer contained the current data and could
write incorrect data back to disk. For example, suppose a disk block maps into two
buffers, A and B. If the kernel writes data first into buffer A and then into buffer
B, the disk block should contain the contents of buffer B if all write operations
completely fill the buffer. However, if the kernel reverses the order when it copies
the buffers to disk, the disk block will contain incorrect data.

The buffer header (Figure 3.1) contains a device number field and a block
number field that specify the file system and block number of the data on disk and
uniquely identify the buffer. The device number is the logical file system number

1. The buffer cache is a software structure that should not be confused with-hardware caches that speed
memory references.
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device num ptr to data area
block num
ptr to previous buf
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ptr to next buf
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on free list ptr to next buf

on free list

Figure 3.1. Buffer Header

(see Section 2.2.1), not a physical device (disk) unit number. The buffer header
also contains a pointer to a data array for the buffer, whose size must be at least as
big as the size of a disk block, and a status field that summarizes the current status
of the buffer. The status of a buffer is a combination of the following conditions:

e The buffer is currently locked (the terms “locked” and “busy” will be used
interchangeably, as will “free” and “unlocked”),

o The buffer contains valid data,

e The kernel must write the buffer contents to disk before reassigning the buffer;
this condition is known as “delayed-write,”

o The kernel is currently reading or writing the contents of the buffer to disk,

e A process is currently waiting for the buffer to become free.

The buffer header also contains two sets of pointers, used by the buffer allocation
algorithms to maintain the overall structure of the buffer pool, as explained in the
next section.

3.2 STRUCTURE OF THE BUFFER POOL

The kernel caches data in the buffer pool according to a least recently used
algorithm: after it allocates a buffer to a disk block, it cannot use the buffer for
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Figure 3.2. Free List of Buffers

another. block until all other buffers have been used more recently. The kernel
maintains a free list of buffers that preserves the least recently used order. The
free list is a doubly linked circular list of buffers with a dummy buffer header that
marks its beginning and end (Figure 3.2). Every buffer is put on the free list when
the system is booted. The kernel takes a buffer from the head of the free list when
it wants any free buffer, but it can take a buffer from the middle of the free list if
it identifies a particular block in the buffer pool. In both cases, it removes the
buffer from the free list. When the kernel returns a buffer to the buffer pool, it
usually attaches the buffer to the tail of the free list, occasionally to the head of the
free list (for error cases), but never to the middle. As the kernel removes buffers
from the free list, a buffer with valid data moves closer and closer to head of the
free list (Figure 3.2). Hence, the buffers that are closer to the head of the free list
have not been used as recently as those that are further from the head of the free
list.

"When the kernel accesses a disk block, it searches for a buffer with the
appropriate device-block number combination. Rather than search the entire buffer
pool, it organizes the buffers into separate queues, hashed as a function of the
device and block number. The kernel links the buffers on a hash queue into a
circular, doubly linked list, similar to the structure of the free list. The number of
buffers on a hash queue varies during the lifetime of the system, as will be seen.
The kernel must use a hashing function that distributes the buffers uniformly across
the set of hash queues, yet the hash function must be simple so that performance
does not suffer. System administrators configure the number of hash queues when
generating the operating system.
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Figure 3.3. Buffers on the Hash Queues

Figure 3.3 shows buffers on their hash queues: the headers of the hash queues
are on the left side of the figure, and the squares on each row are buffers on a hash
queue. Thus, squares marked 28, 4, and 64 represent buffers on the hash queue for
“blkno 0 mod 4” (block number 0 modulo 4). The dotted lines between the buffers
represent the forward and back pointers for the hash queue; for simplicity, later
figures in this chapter will not show these pointers, but their existence is implicit.
Similarly, the figure identifies blocks only by their block number, and it uses a hash
function dependent only on a block number; however, implementations use the
device number, too.

Each buffer always exists on a hash queue, but there is no significance to its
position on the queue. As stated above, no two buffers may simultaneously contain
the contents of the same disk block; therefore, every disk block in the buffer pool
exists on one and only one hash queue and only once on that queue. However, a
buffer may be on the free list as well if its status is free. Because a buffer may be
simultaneously on a hash queue and on the free list, the kernel has two ways to find
it: It searches the hash queue if it is looking for a particular buffer, and it removes
a buffer from the free list if it is looking for any free buffer. The next section will
show how the kernel finds particular disk blocks in the buffer cache, and how it
manipulates buffers on the hash queues and on the free list. To summarize, a
buffer is always on a hash queue, but it may or may not be on the free list.

3.3 SCENARIOS FOR RETRIEVAL OF A BUFFER

As seen in Figure 2.1, high-level kernel algorithms in the file subsystem invoke the
algorithms for managing the buffer cache. The high-level algorithms determine the
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logical device number and block number that they wish to access when they
attempt to retrieve a block. For example, if a process wants to read data from a
file, the kernel determines which file system contains the file and ‘which block in the
file system contains the data, as will be seen in Chapter 4. When about to read
data from a particular disk block, the kernel checks whether the block is in the
buffer pool and, if it is not there, assigns it a free buffer. When about to write data
to a particular disk block, the kernel checks whether the block is in the buffer pool,
and if not, assigns a free buffer for that block. The algorithms for teading and
writing disk blocks use the algorithm getblk (Figure 3.4) to allocate buffers from
the pool.

This section describes five typical scenarios the kernel may follow in getblk to
allocate a buffer for a disk block.

1. The kernel finds the block on its hash queue, and its buffer is free.

2. The kernel cannot find the block on the hash queue, so it allocates a buffer
from the free list.

3. The kernel cannot find the block on the hash queue and, in attempting to
allocate a buffer from the free list (as in scenario 2), finds a buffer on the
free list that has been marked “delayed write.” The kernel must write the
“delayed write” buffer to disk and allocate another buffer.

4. The kernel cannot find the block on the hash queue, and the free list of
buffers is empty.

5. The kernel finds the block on the hash queue, but its buffer is currently busy.

Let us now discuss each scenario in greater detail.

When searching for a block in the buffer pool by its device-block number
combination, the kernel finds the hash queue that should contain the block. It
searches the hash queue, following the linked list of buffers until (in the first
scenario) it finds the buffer whose device and block number match those for which
it is searching. The kernel checks that the buffer is free and, if so, marks the
buffer “busy” so that other processes? cannot access it. The kernel then removes
the buffer from the free list, because a buffer cannot be both busy and on the free
list. If other processes attempt to access the block while the buffer is busy, they
sleep until the buffer is released, as will be seen. Figure 3.5 depicts the first
scenario, where the kernel searches for block 4 on the hash queue marked “blkno 0
mod 4.” Finding the buffer, the kernel removes it from the free list, leaving blocks
5 and 28 adjacent on the free list.

2. Recall from the last chapter that all kernel operations are done in the context of a process that is
executing in kernel mode. Thus, the term “other processes” means that they are also executing in
kernel mode. This term will be used when describing the interaction of several processes cxecutmg in
"kernel mode; if there is no interprocess interaction, the term “kernel” will be used.
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algorithm getblk
input: file system number
block number
output: locked buffer that can now be used for block
{
while (buffer not found)

{
if (block in hash queue)

if (buffer busy) /* scenario 5 */
{
sleep (event buffer becomes free);
continue; /* back to while loop */
)
mark buffer busy; /* scenario 1 */
remove buffer from free list;
return buffer;

else /* block not on hash queue */

if (there are no buffers on free list) /* scenario 4 */
{
sleep (event any buffer becomes free);
continue; /* back to while loop */
!
remove buffer from free list;
if (buffer marked for delayed write) { /* scenario 3 */
asynchronous write buffer to disk;
continue; /* back to while loop */
]
/* scenario 2 — found a free buffer */
remove buffer from old hash queue;
put buffer onto new hash queue;
return buffer;

Figure 3.4. Algorithm for Buffer Allocation
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algorichm brelse
input: locked buffer
output: none
(
wakeup all procs: event, waiting for any buffer to become free;
wakeup all procs: event, waiting for this buffer to become free;
raise processor execution level to block interrupts;
if (buffer contents valid and buffer not old)
enqueue buffer at end of free list
else
enqueue buffer at beginning of free list
lower processor execution level to allow interrupts;
unlock (buffer);

Figure 3.6. Algorithm for Releasing a Buffer

Before continuing to the other scenarios, let us consider what happens to a
buffer after it is allocated. The kernel may read data from the disk to the buffer
and manipulate it or write data to the buffer and possibly to the disk. The kernel
leaves the buffer marked busy; no other process can access it and change its
contents while it is busy, thus preserving the integrity of the data in the buffer.
When the kernel finishes using the buffer, it releases the buffer according to
algorithm brelse (Figure 3.6). It wakes up processes that had fallen asleep because
the buffer was busy and processes that had fallen asleep because no buffers
remained on tne free list. In both cases, release of a buffer means that the buffer is
available for use by the sleeping processes, although the first process that gets the
buffer locks it and prevents the other processes from getting it (recall Section
2.2.2.4). The kernel places the buffer at the end of the free list, unless an 1/0
error occurred or unless it specifically marked the buffer “old,” as will be seen later
in this chapter; i the latter cases, it places the buffer at the beginning of the free
list. Tne buffer is now free for another process to claim it.

Just as tne kernel invokes algorithm brelse when a process has no more need for
a buffer, it also invokes the algorithm when handling a disk interrupt to release
buffers used for asynchronous I/O to and from the disk, as will be seen in Section
3.4. The kernel raises the processor execution level to prevent disk interrupts while
manipulating the free list, thereby preventing corruption of the buffer pointers that
could result from a nested call to brelse. Similar bad effects could happen if an
interrupt handler invoked brelse while a process was executing getblk, so the kernel
raises the processor execution level at strategic places in getblk, too. The exercises
explore these cases in greater detail.

In the second scenario in algorithm getblk, the kernel searches the hash queue
that should contain the block but fails to find it there. Since the block cannot be
on another hash queue because it cannot “hash” elsewhere, it is not in the buffer
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cache. So the kernel removes the first buffer from the free list instead; that buffer
had been allocated to another disk block and is also on a hash queue. If the buffer
has not been marked for a delayed write (as will be described later), the kernel
marks the buffer busy, removes it from the hash queue where it currently resides,
reassigns the buffer header’s device and block number to that of the disk block for
which the process is searching, and places the buffer on the correct hash queue.
The kernel uses the buffer but has no record that the buffer formerly contained
data for another disk block. A process searching for the old disk block will not find
it in the pool and will have to allocate a new buffer for it from the free list, exactly
as outlined here. When the kernel finishes with the buffer, it releases it as
described above. In Figure 3.7, for example, the kernel searches for block 18 but
does not find it on the hash queue marked “blkno 2 mod 4.” It therefore removes
the first buffer from the free list (block 3), assigns it to block 18, and places it on
the appropriate hash queue.

In the third scenario in algorithm getblk, the kernel also has to allocate a buffer
from the free list. However, it discovers that the buffer it removes from the free
list has been marked for “delayed write,” so it must write the contents of the buffer
to disk before using the buffer. The kernel starts an asynchronous write to disk and
tries to allocate another buffer from the free list. When the asynchronous write
completes, the kernel releases the buffer and places it at the head of the free list.
The buffer had started at the end of the free list and had traveled to the head of
the free list. If, after the asynchronous write, the kernel were to place the buffer at
the end of the free list, the buffer would get a free trip through the free list,
working against the least recently used algorithm. For example, in Figure 3.8, the
kernel cannot find block 18, but when it attempts to allocate the first two buffers
(one at a time) on the free list, it finds them marked for delayed write. The kernel
removes them from the free list, starts write operations to disk for the blocks, and
allocates the third buffer on the free list, block 4. It reassigns the buffer’s device
and block number fields appropriately and places the buffer, now marked block 18,
on its new hash queue.

In the fourth scenario (Figure 3.9), the kernel, acting for process A, cannot find
the disk block on its hash queue, so it attempts to allocate a new buffer from the
free list, as in the second scenario. However, no buffers are available on the free
list, so process A goes to sleep until another process executes algorithm brelse,
freeing a buffer. When the kernel schedules process A, it must search the hash
queue again for the block. It cannot allocate a buffer immediately from the free
list, because it is possible that several processes were waiting for a free buffer and
that one of them allocated a newly freed buffer for the target block sought by
process A. Thus, searching for the block again insures that only one buffer
contains the disk block. Figure 3.10 depicts the contention between two processes
for a free buffer.

The final scenario (Figure 3.11) is complicated, because it involves complex
relationships between several processes. Suppose the kernel, acting for process A,
searches for a disk block and allocates a buffer but goes to sleep before freeing the
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buffer. For example, if process A attempts to read a disk block and allocates a
buffer as in_scenario 2, then it will sleep while it waits for the I/O transmission
from disk, to complete.. While process. A sleeps, suppose the kernel schedules a
second process, B, which tries to access the disk block whose buffer was just locked
by process A. Process B (going through scenario 5) will find the locked block on
the hash queue. Since it is illegal to use a locked buffer and it is illegal to allocate
a second buffer for a disk block, process B marks the buffer “in demand” and then
sleeps and waits for process A to release the buffer.

Process A will eventually release the buffer and notice that the buffer is in
demand. It awakens all processes sleeping on the event “the buffer becomes free,”
including process B. When the kernel again schedules process B, process B must
verify that the buffer is free. Another process, C, may have been waiting for the
same buffer, and the kernel may have scheduled C to run before process B; process
C may have gone to sleep leaving the buffer locked. Hence, process B must check
that the block is indeed free

Process B must also verify that the buffer contains the disk block that it

originally requested, because process C may have allocated the buffer to another
. block, as in scenario 2. When process B executes, it may find that it had been
" waiting for the wrong buffer, so it must search for the block again: If it were to
allocate a buffer automatically from the free list, it would miss the possibility that
another process just allocated a buffer for the block.
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Figure 3.10. Race for Free Buffer

In the end, process B will find its block, possibly allocating a new buffer from
the free list as in the second scenario. In Figure 3.11, for example, a process
searching for block 99 finds it on its hash queue, but the block is marked busy.
The process sleeps until the block becomes free and then restarts the algorithm
from the beginning. Figure 3.12 depicts the contention for a locked buffe:-.

The algorithm for buffer allocation must be safe; processes must not sleep
forever, and they must eventually get a buffer. The kernel guarantees that all
processes waiting for buffers will wake up, because it allocaies buffers during the
execution of system calls and frees them before returning.’ Processes in user mode
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do not control the allocation of kernel buffers directly, so they cannot purposely
“hog” buffers. The kernel loses control over a buffer only when it waits for the
completion of I/O between the buffer and the disk. It is conceivable that a disk
drive is corrupt so that it cannot interrupt the CPU, preventing the kernel from
ever releasing the buffer. The disk -driver must monitor the hardware for such
cases and return an error to the kernel for a bad disk job. In short, the kernel can
guarantee that processes sleeping for a buffer will wake up eventually.

It is also_possible to imagine cases where a process is starved out of accessing a
buffer. In the fourth scenario, for example, if several processes sleep while waiting
for a buffer to become free, the kernel does not guarantee that they get a buffer in
the order that they requested one. A process could sleep and wake up wheri a
buffer becomes free, only to go to sleep again because another process got control of
the buffer first. Theoretically, this could go on forever, but practically, it is not a
problem because of the many buffers that are typically configured in the system.

3. The mount system call is an exception, because it allocates a buffer until a later umount call. This
exception is not critical, because the total number of buffers far exceeds the number of active
mounted file systems.
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Figure 3.12. Race for a Locked Buffer

3.4 READING AND WRITING DISK BLOCKS

Now that the buffer allocation algorithm has- been covered, the procedures for
reading and writing disk blocks should be easy to understand. To read a disk block
(Figure 3.13), a process uses algorithm getblk to search for it in the buffer cache.
If it is in the cache, the kernel can return it immediately without physically reading
the block from the disk. If it is not in the cache, the kernel calls the disk driver to
“schedule” a read request and goes to sleep awaiting the event that the I/0
sompletes. The disk driver notifies the disk controller hardware that it wants to
read data, and the disk controller later transmits the data to the bl}ffer. Finally,
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algorithm bread  /* block read */
input: file system block number
output: buffer containing data
{
get buffer for block (algorithm getblk);
if (buffer data valid)
return buffer;
initiate disk read;
sleep(event disk read complete);
return (buffer);

}

Figure 3.13. Algorithm for Reading a Disk Block

the disk controller interrupts the processor when the I/O is complete, and the disk
interrupt handler awakens the sleeping process; the contents of the disk block are
now in the buffer. The modules that requested the particular block now have the
.data; when they no longer need the buffer they release it so that other processes can
access it.

Chapter 5 shows how higher-level kernel modules (such as the file subsystem)
may anticipate the need for a second disk block when a process reads a file
sequentially. The modules request the second I/0 asynchronously in the hope that
the data will be in memory when needed, improving performance. To do this, the
kernel executes the block read-ahead algorithm breada (Figure 3.14): The kernel
checks if the first block is in the cache and, if it is not there, invokes the disk driver
to read that block. If the second block is not in the buffer cache, the kernel
instructs the disk driver to read it asynchronously. Then the process goes to sleep
awaiting the event that the I/0O is complete on the first block. When it awakens, it
returns the buffer for the first block, and does not care when the I/0 for the second
block completes. When the I/0O for the second block does complete, the disk
controller interrupts the system; the interrupt handler recognizes that the 1/0 was
asynchronous and releases the buffer (algorithm brelse). If it would not release the
buffer, the buffer would remain locked and, therefore, inaccessible to all processes.
It is impossible to unlock the buffer beforehand, because 1/O to the buffer was
active, and hence the buffer contents were not valid. Later, if the process wants to
read the second block, it should find it in the buffer cache, the 1I/0O having
compieted in the meantime. If, at the beginning of breada, the first block was in
the buffer cache, the kerrel immediately checks if the second block is in the cache
and proceeds as just described.

The algorithm for writing the contents of a buffer to a disk block is similar
(Figure 3.15). The kernel informs the disk driver that it has a buffer whose
contents should be output, and the disk driver schedules the block for I/0. If the
write is synchronous, the calling process goes to sleep awaiting I/O completion and
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algorithm breada /* block read and read ahead */
input: (1) file system block number for immediate read

(2) file system block number for asynchronous read
output: buffer containing data for immediate read

if (first block not in cache)
{
get buffer for first block (algorithm getblk);
. if (buffer data not valid)
initiate disk read;

}

if (second block not in cache)

get buffer for second block (algorithm getblk);
if (buffer data valid)

release buffer (algorithm brelse);

else
initiate disk read;
1
if (first block was originally in cache)
{
read first block (algorithm bread);
return buffer;
}

sleep(event first buffer contains valid data);
return buffer;

Figure 3.14. Algorithm for Block Read Ahead

releases the buffer when it awakens. If the write is asynchronous, the kernel starts
the disk write but-does not wait for the write to complete. The kernel will release
the buffer when the I/0 completes.

There are occasions, described in the next two chapters, when the kernel does
not write data immediately to disk. If it does a “delayed write,” it marks the
buffer accordingly, releases the buffer using algorithm brelse, and continues without
scheduling I/0. The kernel writes the block to disk before another process can
reallocate the buffer to another block, as described in scenario 3 of getblk. In the
meantime, the kernel hopes that a process accesses the block before the buffer must
be written to disk; if that process subsequently changes the contents of the buffer,
the kernel saves an extra disk operation.

A delayed write is different from an asynchronous write. When doing an
asynchronous write, the kernel starts the disk operation immediately but does not
wait for its completion. For a “delayed write,” the kernel puts off the physical
write to disk as long as possible; then, recalling the third scenario in algorithm
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algorithm bwrite . /* block write */
input: buffer
output: none
{
initiate disk write;
if (I/0 synchronous)
{
sleep(event 1/0 complete);
release buffer (algorithm brelse);
)
else if (buffer marked for delayed write)
mark buffer to put at head of free list;

]

Figure 3.15. Algorithm for Writing a Disk Block

getblk, it marks the buffer “old” and writes the block to disk asynchronously. The
disk controller later interrupts the system and releases the buffer, using algorithm
‘brelse; the buffer ends up on the head of the free list, because it was “old.”
Because of the two asynchronous 1/0O operations — block read ahead and delayed
write — the kernel can invoke brelse from an interrupt handler. Hence, it must
prevent interrupts in any procedure that manipulates the buffer free list, because
brelse places buffers on the free list.

3.5 ADVANTAGES AND DISADVANTAGES OF THE BUFFER CACHE

Use of the buffer cache has several advantages and, unfortunateiy, some
disadvantages.

e The use of buffers allows uniform disk access, because the kernel does not need
to know the reason for the /0. Instead, it copies data to and from buffers,
regardless of whether the data is part of a file, an inode, or a super block. The
buffering of disk I/O makes the code more modular, since the parts of the
kernel that do the I/O with the disk have one interface for all purposes. In
short, system design is simpler.

e The system places no data alignment restrictions on user processes doing 1/0,
because the kernel aligns data internally. Hardware implementations frequently
require a particular alignment of data for disk 1/0, such as aligning the data on
a two-byte boundary or on a four-byte boundary in memory. Without a buffer
mechanism, programmers would have to make sure that their data buffers were
correctly aligned. Many programmer errors would result, and programs would
not be portable to UNIX systems running on machines with stricter address
alignment properties. By copying data from user buffers to system buffers (and
vice versa), the kernel eliminates the need for special alignment of user buffers,
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making user programs simpler and more portable.

e Use of the buffer cache can reduce the amount of disk traffic, thereby increasing
overall system throughput and decreasing response time. Processes reading
from the file system may find data blocks in the cache and avoid the need for
disk I7/0. The kernel frequently uses “delayed write” to avoid unnecessary disk
writes, leaving the block in the buffer cache and hoping for a cache hit on the
block. Obviously, the chances of a cache hit are greater for systems with many
buffers. However, the number of buffers a system can profitably configure is
constrained by the amount of memory that should be kept available for
executing processes: if too much memory is used for buffers, the system may
slow down because of excessive process swapping or paging.

e The buffer algorithms help insure file system integrity, because they maintain a
common, single image of disk blocks contained in the cache. If two processes
simultaneously attempt to manipulate one disk block, the buffer algorithms
(getblk for example) serialize their access, preventing data corruption. ‘

o Reduction of disk traffic is important for good throughput and response time,
but the cache strategy also introduces several disadvantages. Since the kernel
does not immediately write data to the disk for a delayed write, the system is
vulnerable to crashes that leave disk data in an incorrect state. Although recent
system implementations have reduced the damage caused by catastrophic
events, the basic problem remains: A user issuing a write system call is never
sure when the data finally makes its way to disk.*

e Use of the buffer cache requires an extra data copy when reading and writing to
and from user processes. A process writing data copies the data into the kernel,
and the kernel copies the data to disk; a process reading data has the data read
from disk into the kernel ,and from the kernel to the user process. When
transmitting large amounts of data, the extra copy slows down performance, but
when transmitting small amounts of data, it improves performance because the
kernel buffers the ‘data (using algorithms getblk and delayed write) until it is
economical to transmit to or from the disk.

3.6 SUMMARY

This chapter has presented the structure of the buffer cache and the various
methods by which the kernel locates blocks in the cache. The buffer algorithms
combine several simple ideas to provide a sophisticated caching mechanism. The
kernel uses the least-recently-used replacement algorithm to keep blocks in the

4. The standard I/0 package available to C language programs includes an fflush call. This function
call flushes data from buffers in the user address space (part of the package) into the kernel.
However, the user still does not know when the kernel writes the data to the disk.



58 THE BUFFER CACHE

buffer cache, assuming that blocks that were recently accessed are likely to be
accessed again soon. The order that the buffers appear on the free list specifies the
order in which they were last used. Other buffer replacement algorithms, such as
first-in-first-out or least-frequently-used, are either more complicated to implement
or result in lower cache hit ratios. The. hash function and hash queues enable the
kernel to find particular blocks quickly, and use of doubly linked lists makes it-easy
to remove buffers from the lists.

The kernel identifies the block it needs by supplying a logical device number
and block number. The algorithm getblk searches the buffer cache for a block and;
if the buffer is present and free, locks the buffer and returns it. If the buffer is
locked, the requesting process sleeps until it becomes free. The locking mechanism
ensures that only one process at a time manipulates a buffer. If the block is not in
the cache, the kernel reassigns a free buffer to the block, locks it and returns it.
The algorithm bread allocates a buffer for a block and reads the data into the
buffer, if necessary. The algorithm bwrite copies data into a previously allocated
buffer. If, in execution of certain higher-level algorithms, the kernel determines
that it is not necessary to copy the data immediately to disk, it marks the buffer
“delayed write” to avoid unnecessary 1/0. Unfortunately, the “delayed write”
scheme means that a process is never sure when the data is physically on disk. If
the kernel writes data synchronously to disk, it invokes the disk driver to write the
block to the file system and waits for an I/O completion interrupt.

The kernel uses the buffer cache in many ways. It transmits data between
- application programs and the file system via the buffer cache, and it transmits
auxiliary system data such as inodes between higher-level kernel algorithms and the
file system. It also uses the buffer cache when reading programs into memory for
execution. The following chapters will describe many algorithms that use the
procedures described in this chapter. Other algorithms that cache inodes and pages
of memory also use techniques similar to those described for the buffer cache.

3.7 EXERCISES

1. Consider the hash function in Figure 3.3. The best hash function is one that
distributes the blocks uniformly over the set of hash queues. What would be an
optimal hashing function? Should a hash function use the logical device number in its
calcuiations?

2. In the algorithm getblk, if the kernel removes a buffer from the free list, it must raise
the processor priority level to block out interrupts before checking the free list. Why?

* 3. In algorithm gerblk, the kernel must raise the processor priority level to block out
interrupts before checking if a block is busy. (This is not shown in the text.) Why?

4. In algorithm brelse, the kernel enqueues the buffer at the head of the free list if the
buffer contents are invalid. If the contents are invalid, should the buffer appear on a
hash queue?

5. Suppose the kernel does a delayed write of a block. What happens when another
process takes that block from its hash queue? From the free list?
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*6.

10.

11.

12.

EXERCISES Sé

If several processes contend for a buffer, the kernel guarantees that none of them sleep
forever, but it does not guarantee that a process will not be starved out from use of a
buffer. Redesign getblk so that a process is guaranteed eventual use of a buffer.
Redesign the algorithms for getblk and brelse such that the kernel does not follow a
least-recently-used scheme but a first-in-first-out scheme. Repeat this problem using a
least-frequently-used scheme.

Describe a scenario where the buffer data is already valid in algorithm bread.

Describe the various scenarios that can happen in algorithm breada. What happens
on the next invocation of bread or breada when the current read-ahead block will be
read? In algorithm breada, if the first or second block are not in the cache, the later
test to see if the buffer data is valid implies that the block could be in the buffer pool.
How is this possible?

Describe an algorithm that asks for and receives any free buffer from the buffer pool.
Compare this algorithm to getblk. ’

Various system calls such as umount and sync (Chapter 5) require the kernel to flush
to disk all buffers that are “delayed write” for a particular file system. Describe an
algorithm that implements a buffer flush. What happens to the order of buffers on the
free list as a result of the flush operation? How can the kernel be sure that no other
process sneaks in and writes a buffer with delayed write to the file system while the
flushing process sleeps waiting for an I/O completion?

Define system response time as the average time it takes to complete a system call.
Define system throughput as the number of processes the system can execute in a
given time period. Describe how the buffer cache can help response time. Does it
necessarily help system throughput?
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REPRESENTATION OF FILES

As observed in Chapter 2, every file on a UNIX system has a unique inode. The
inode contains the information necessary for a process to access a file, such as file
ownership, access rights, file size, and location of the file’s data in the file system.
Processes access files by a well defined set of system calls and specify a file by a
character string that is the path name. Each path name uniquely specifies a file,
and the kernel converts the path name to the file’s inode.

This chapter describes the internal structure of files in the UNIX system, and
the next chapter describes the system call interface to files. Section 4.1 examines
the inode and how the kernel manipulates it, and Section 4.2 examines the internal
structure of regular files and how the kernel reads and writes their data. Section
4.3 investigates the structure of directories, the files that allow the kernel to
organize the file system as a hierarchy of files, and Section 4.4 presents the
algorithm for converting user file names to inodes. ‘Séction 4.5 gives the structure
of the super block, and Sections 4.6 and 4.7 present the algorithms for assignment
of disk inodes and disk blocks to files. Finally, Section 4.8 talks about other file
types in the system, namely, pipes and device files.

The algorithms described in this chapter occupy the layer above the buffer
cache algorithms explained in the last chapter (Figure 4.1). The algorithm iget
returns a previously identified inode, possibly reading it from disk via the buffer
cache, and the algorithm iput releases the inode. The algorithm bmap sets kernel
parameters for accessing a file. The algorithm namei converts a user-level path

60
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Lower Level File System Algorith_ms

namei

alloc free | ialloc ifree

iget iput bmap

buffer allocation algorithms

getblk  brelse bread breada bwrite

Figure 4.1. File System Algorithms

name to-an inode, using the algorithms iget, iput, and bmap. Algorithms alloc and
free allocate and-free disk blocks for files, and algorithms ialloc and ifree assign
and free inodes for files.

4.1 INODES

4.1.1 Definition

Inodes exist in a static form on disk, and the kernel reads them into an in-core
inode to manipulate them. Disk inodes consist of the following fields:

¢ File owner identifier. Ownership is divided between an individual owner and a

“group” owner and defines the set of users who have access rights to a file. The
-superuser has access rights to all files in the system.

e File type. Files may be of type regular, directory, character or block special, or
FIFO (pipes). ‘

o File access permissions. The system protects files according to three classes:
the owner and the group owner of the file, and other users; each class hds access
rights to read, write and execute the file, which can be set individually. Because
directories cannot be executed, execution permission for a directory gives the
right to search the directory for a file name. '

- File access times, giving the time the file was last modified, when it was last
accessed, and when the inode was last modified.
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e Number of links to the file, representing the number of names the file has in the
directory hierarchy. Chapter 5 explains file links in detail.

e Table of contents for the disk addresses of data in a file. Although users treat
the data in a file as a logical stream of bytes, the kernel saves the data in
discontiguous disk blocks. The inode identifies the disk blocks that contain the
file’s data.

e File size. Data in a file is addressable by the number of bytes from the
beginning of the file, starting from byte offset 0, and the file size is 1 greater
than the highest byte offset of data in the file. For example, if a user creates a
file and writes only 1 byte of data at byte offset 1000 in the file, the size of the
file is 1001 bytes.

The inode does not specify the path name(s) that access the file.

owner mjb
group os
type regular file
perms rwxr-Xr-x
accessed Oct 23 1984 1:45 P.M.
modified Oct 22 1984 10:30 A.M.
inode Oct 23 1984 1:30 P.M.
size 6030 bytes

disk addresses

Figure 4.2. Sample Disk Inode

Figure 4.2 shows the disk inode of a sample file. This inode is that of a
regular file owned by “mjb,” which contains 6030 bytes. The system permits
“mjb” to read, write, or execute the file; members of the group “os” and all other
users can only read or execute the file, not write it. The last time anyone read the
file was on October 23, 1984, at 1:45 in the afternoon, and the last time anyone
wrote the file was on October 22, 1984, at 10:30 in the morning. The inode was
last changed on October 23, 1984, at 1:30 in the afternoon, although the data in
the file was not written at that time. The kernel encodes the above information in
the inode. Note the distinction between writing the contents of an inode to disk
and writing the contents of a file to disk. The contents of a file change only when
writing it. The contents of an inode change when changing the contents of a file or
when changing its owner, permission, or link settings. Changing the contents of a
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file automatically implies a change to the inode, but changing the inode does not
imply that the contents of the file change.

The in-core copy of the inode contains the following fields in addition to the
fields of the disk inode:

e The status of the in-core inode, indicating whether

— the inode is locked,

— a process is waiting for the inode to become unlocked,

— the in-core representation of the inode differs from the disk copy as a result
of a change to the data in the inode,

~ the in-core representation of the file differs from the disk copy as a result of
a change to the file data,

— the file is a mount point (Section 5.15).

o The logical device number of the file system that contains the file.

e The inode number. Since inodes are stored in a linear array on disk (recall
Section 2.2.1), the kernel identifies the number of a disk inode by its position in
the array. The disk inode does not need this field.

o Pointers to other in-core inodes. The kernel links inodes on hash qucues and on
a free list in the same way that it links buffers on buffer hash queues and on the
buffer free list. A hash queue is identified according to the inode’s logicgl
device number and inode number. The kernel can contain at most one in-core
copy of a disk inode, but inodes can be simultaneously on a hash queue and on
the free list.

o A reference count, indicating the number of instances of the file that are active
(such as when opened).

Many fields in the in-core inode are analogous to fields in the buffer header, and
the management of inodes is similar to the management of buffers. The inode lock,
when sct, prevents other processes from accessing the inode; other processes set a
flag in the inode when attempting to access it to indicate that they should be
awakened when the lock is released. The kernel sets other flags to indicate
discrepancies between the disk inode and the in-core copy. When the kerne! needs
to record changes to the file or to the inode, it writes the in-core copy of the inode
to disk after examining these flags.

The most striking difference between an in-core inode and a buffer header is the
in-core reference count, which counts the number of active instances of the file. An
inode is active when a process allocates it, such as when opening a file. An inode is
on the free list only if its reference count is 0, meaning that the kernel can
reallocate the in-core inode to another disk inode. The free list of inodes thus
serves as a cache of inactive inodes: If a process attempts to access a file whose
inode is not currently in the in-core inode pool, the kernel reallocates an in-core
inode from the free list for its use. On the other hand, a buffer has no reference
count; it is on the free list if and only if it is unlocked.
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algorithm iget
input: file system inode number
output: locked inode
{
while (not done)
(
if (inode in inode cache)
{
if (inode locked)
{
sleep (event inode becomes unlocked);
continue; /* loop back to while */
}
/* special processing for mount points (Chapter 5) */
if (inode on inode free list)
remove from free list;
increment inode reference count;
return (inode);

}

/* inode not in inode cache */
if (no inodes on free list)
returi(error);
remove new inode from free list;
reset inode number and file system;
remove inode from old hash queue, place on new one;
read inode from disk (algorithm bread);
initialize inode (e.g. reference count to 1);
- return(inode);

Figure 4.3. Algorithm for Allocation of In-Core Inodes

4.1.2 Accessing Inodes

The kernel identifies particular inodes by their file system and inode number and
allocates in-core inodes at the request of higher-level algorithms. The algorithm
iget allocates an in-core copy of an inode (Figure 4.3); it-is almost identical to the
algorithm getblk for finding a disk block in the buffer cache. The kernel maps the
device number and inode number into a hash queue and searches the queue for the
inode. If it cannot find the inode, it allocates one from the free list and locks it.
The kernel then prepares to read the disk copy of the newly accessed inode-into the
in-core copy. It already knows the inode number and logical device and computes
the logical disk block that contains the inode according to how many disk inodes fit
into a disk block. The computation follows the formula
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block num = ((inode number — 1) / number of inodes per block) +
start block of inode list

where the division operation returns the integer part of the quotient. For example,
assuming that block 2 is the beginning of the inode list and that there are 8 inodes
per block, then inode number 8 is in disk block 2, and inode number 9 is in disk
block 3. If there are 16 inodes in a disk block, then inode numbers 8 and 9 are in
disk block 2, and inode number 17 is the first inode in disk block 3.

When the kernel knows the device and disk block number, it reads the block
using the algorithm bread (Chapter 2), then uses the following formula to compute
the byte offset of the inode in the block:

((inode number — 1) modulo (number of inodes per block)) * size of disk inode

For example, if each disk inode occupies 64 bytes and there are 8 inodes per disk
block, then inode number 8 starts at byte offset 448 in the disk block. The kernel
removes the in-core inode from the free list, places it on the correct hash queue,
and sets its in-core reference count to 1. It copies the file type, owner fields.
permission settings, link count, file size, and the table of contents from the disk
inode to the in-core inode, and returns a locked inode.

The kernel manipulates the inode lock and reference count independently. The
lock is set during execution of a system call to prevent other processes from
accessing the inode while it is in use (and possibly inconsistent). The kernel
releases the lock at the conclusion of the system call: an inode is never locked
across system calls. The kernel increments the reference count for every active
reference to a file. For example, Section 5.1 will show that it increments the inode
reference count when a process opens a file. It decrements the reference count only
when the reference becomes inactive, for example, when a process closes a file.
The reference count thus remains set across multiple system calls. The lock is free
between system calls to allow processes to share simultaneous access to a file; the
reference count remains set between system calls to prevent the kernel from
reallocating an active in-core inode. Thus, the kernel can lock and unlock an
allocated inode independent of the value of the reference count. System calls other
than open allocate and release inodes, as will be seen in Chapter 5.

Returning to algorithm iget, if the kernel attempts to take an inode from the
free list but finds the free list empty, it reports an error This is different from the
philosophy the kernel follows for disk buffers, where a process sleeps until a buffer
becomes free: Processes have control over the allocation of inodes at user level via
execution of open and close system calls, and consequently the kernel cannot
guarantee when an inode will become available. Therefore, a process that goes to
sleep waiting for a free inode to become availabie may never wake up. Rather <han
. leave such a process “hanging,” the kernel fails the system call. Howaever,
~ processes do not have such control over buffers: Because a process cannot keep a
buffer locked across system calls, the kernel can guarantee that a buffer will
become free soon, and a process therefore sleeps until one is available.
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The preceding paragraphs cover the case where the kernel allocated an inode
that was not in the inode cache. If the inode is in the cache, the process (A) would’
find it on its hash queue and check if the inode was currently locked by another
process (B). If the inode is locked, process A sleeps, setting a flag in the in-core
inode to indicate that it is waiting for the incde to become free. When process B
later unlocks the inode, it awakens all processes (including process A) waiting for
the inode to become free. When process A is finally able to use the inode, it locks
the inode so that other processes cannot allocate it. If the reference count was
previously 0, the inode also appears on the free list, so the kernel removes it from
there: the inode is no longer free. The kernel increments the inode reference count
and returns a locked inode.

To summarize, the iget algorithm is used toward the beginning of system calls
when a process first accesses a file. The algorithm returns a locked inode structure
with reference count 1 greater than it had previously been. The in-core inode
contains up-to-date information on the state of the file. The kernel unlocks the
inode before returning from the system call so that other system calls can access
the inode if they wish. Chapter 5 treats these cases in greater detail.

algorithm iput /* release (put) access to in—core inode */
input: pointer to in—core inode
output: none
{
lock inode if not already locked;
decrement inode reference count;
if (reference count == 0)
{
if (inode link count == 0)
{
free disk blocks for file (algorithm free, section 4.7);
set file type to 0;
free inode (algorithm ifree, section 4.6);
)
if (file accessed or inode changed or file changed)
update disk inode;
put inode on free list;

}

release inode lock;

Figure 4.4. Releasing an Inode
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4.1.3 Releasing Inodes

When the kernel releases an inode (algorithm iput, Figure 4.4), it decrements its
in-core reference count. If the count drops to O, the kernel writes the inode to disk
if the in-core copy differs from the disk copy. They differ if the file data has
changed, if the file access time has changed, or if the file owner or access
permissions have changed. The kernel places the inode on the free list of inodes,
effectively caching the inode in case it is needed again soon. The kernel may also
release all data blocks associated with the file and free the inode if the number of
links to the file is 0.

4.2 STRUCTURE OF A REGULAR FILE

As mentioned above, the inode contains the table of contents to locate a file’s data
on disk. Since each block on a disk is addressable by number, the table of contents
consists of a set of disk block numbers. If the data in a file were stored in a
contiguous section of the disk (that is, the file occupied a linear sequence of disk
blocks), then storing the start block address and the file size in the inode would
suffice to access all the data in the file. However, such an allocation strategy would
not allow for simple expansion and contraction of files in the file system without
running the risk of fragmenting free storage area on the disk. Furthermore, the
kernel would have to allocate and reserve contiguous space in the file system before
allowing operations that would increase the file size.

............ File A File B File C
40 50 0 70
Block Addresses
------------ File A Free File C File B
40 50 60 70 81

Block Addresses

Figure 4.5. Allocation of Contiguous Files and Fragmentation of Free Space

For example, suppose a user creates three files, A, B and C, each consisting of
10 disk blocks of storage, and suppose the system allocated storage for the three
files contiguously. If the user then wishes to add 5 blocks of data to the middle file,
B, the kernel would have to copy file B to a place in the file system that had room
for 15 blocks of storage. Aside from the expense of such an operation, the disk
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blocks . previously occupied by file B’s data would be unusable except for files
smaller than 10 blocks (Figure 4.5). The kernel could minimize fragmentation of
storage space by periodically running garbage collection procedures to compact
available storage, but that would place an added drain onprocessing power.

For greater flexibility, the kernel allocates file space one block at a time and
allows the data in a file to be spread throughout the file system. But this allocation
scheme complicates the task of locating the data. The table of contents could
consist of a list of block numbers such that the blocks contain the data belonging to
the file, but simple calculations show that a linear list of file blocks in the inode is
difficult to manage. If a logical block contains 1K bytes, then a file consisting of
10K bytes would require an index of 10 block numbers, but a file containing 100K
bytes would require an index of 100 block numbers. Either the size of the inode
would vary according to the size of the file, or a relatively low limit would have to
be placed on the size of a file.

To keep the inode structure small yet still allow large files, the table of contents
of disk blocks conforms to that shown in Figure 4.6. The System V UNIX system
runs with 13 entries in the inode table of contents, but the principles are
independent of the number of entries. The blocks marked “direct” in the figure
contain the numbers of disk blocks that contain real data. The block marked
“single indirect” refers to a block that contains a list of direct block numbers. To
access the data via the indirect block, the kernel must read the indirect block, find
the appropriate direct block entry, and then read the direct block to find the data.
The block marked “double indirect” contains a list of indirect block numbers, and
the block marked “triple indirect™ contains a list of double indirect block numbers.

. In principle, the method could be extended to support “quadruple indirect
blocks,” “quintuple indirect blocks,” and so on, but the current structure has
sufficed in practice. Assume that a logical block on the file system holds 1K bytes
and that a block number is addressable by a 32 bit (4 byte) integer. Then a block
can hold np to 256 block numbers The maximum number of bytes that could be
held in a_file is calculated (Figure 4.7) at well over 16 gigabytes, using 10 direct
blocks and 1 indirect, 1 doubie indirect, and 1 triple indirect block in the inode.
Given that the file size field in the inode is 32 bits, the size of a file is effectively
limited to 4 gigabytes {2°<).

Processes access data in a fiie by byte offset. They work in terms of byte counts
and view a fiie as a siream of bytes starting at byte address 0 and going up to tne
size of the file. The kernel converts the user view of bytes into a view of blocks:
The file starts at logica biock O and . continues o a logical block numbe:
corresponding to the file size. The kerne! accesses the inode and converts the
iogical file block into the appropriate disk block. Figure 4.8 gives the algorithm
bmap for converting a file byte offset into a physical disk block.

Consider 'the block iayout for the file in Figure 4.9 and assume that a disk block
contains 1024 bytes. - I a process wants to access byte offset 9000, the kernel
calculates that the byte is in direct block 8 in the file (counting from 0). It then
accesses block number 367; the 808th byte in that block (starting from 0) is byte
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Figure 4.6. Direct and Indérect Blocks in Inode
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10 direct blocks with 1K bytes each = 10K bytes
1 indirect block with 256 direct blocks = 256K bytes
1 double indirect block with 256 indirect blocks = 64M bytes
1 triple indirect block with 256 double indirect blocks =  16G bytes

Figure 4.7. Byte Capacity of a File — 1K Bytes Per Block

algorithm bmap  /* block map of logical file byte offset to file system block */
input: (1) inode

(2) byte offset
output: (1) block number in file system

(2) byte offset into block

(3) bytes of 1/0 in block

(4) read ahead block number

calculate logical block number in file from byte offset;
calculate start byte in block for 1/0; /* output 2 */
calculate number of bytes to copy to user; /* output 3 */
check if read—ahead applicable, mark inode; /* output 4 */
determine level of indirection;
while (not at necessary level of indirection)
{

calculate index into inode or indirect block from

logical block number in file;

get disk block number from inode or indirect block;

release buffer from previous disk read, if any (algorithm brelse);

if (no more levels of indirection)

return (block number);
read indirect disk block (algorithm bread);
adjust logical block number in file according to level of indirection;

Figure 4.8. Conversion of Byte Offset to Block Number in File System

9000 in the file. If a process wants to access byte offset 350,000 in the file, it must
access a double indirect block, number 9156 in the figure. Since an indirect block
has room for 256 block numbers, the first byte accessed via the double indirect
block is byte number 272,384 (256K + 10K); byte number 350,000 in a file is
therefore byte number 77,616 of the double indirect block. Since each single
indirect block accesses 256K bytes, byte number 350,000 must be in the Oth single
indirect block of the double indirect block — block number 331. Since each direct
biock in a single indirect block contains 1K bytes, byte number 77,616 of a single -
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4096
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45423

11111
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101 data block

367

428 331 »
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9156 3333
824 double indirect 331 data block
single indirect

Figure 4.9. Block Layout of a Sample File and its Inode

indirect block is in the 75th direct block in the single indirect block — block
number 3333. Finally, byte number 350,000 in the file is at byte number 816 in
block 3333.

Examining Figure 4.9 more closely, several block entries in the inode are 0,
meaning that the logical block entries contain no data. This happens if no process
ever wrote data into the file at any byte offsets corresponding to those blocks and
hence the block numbers remain at their initial value, 0. No disk space is wasted
for such blocks. Processes can cause such a block layout in a file by using the /seek
and write system calls, as described in the next chapter. The next chapter also
describes how the kernel takes care of read system calls that access such blocks.

The conversion of a large byte offset, particularly one that is referenced via the
triple indirect block, is an arduous procedure that could require the kernel to access
three disk blocks in addition to the inode and data block. Even if the kernel finds
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the blocks in the buffer cache, the operation is still expensive, because the kernel
must make multiple requests of the buffer cache and may have to sleep awaiting
locked buffers. How effective is the algorithm in practice? That depends on how
the system is used and whether the user community and job mix are such that the
kernel accesses large files or small files more frequently. It has been observed
[Mullender 84], however, that most files on UNIX systems contain less than 10K
bytes, and many contain less than 1K bytes!! Since 10K bytes of a file are stored in
direct blocks, most file data can be accessed with one disk access. So in-spite of the
fact that accessing large-files is an expensive operation, accessing common-sized
files is fast.

Two extensions to the inode structure just described attempt to take advantage
of file size characteristics. A major principle in the 42 BSD file system
implementation [McKusick 84] is that the more data the kernel can access on the
disk in a single operation, the faster file access becomes. That argues for having
larger logical disk blocks, and the Berkeley implementation allows logical disk
blocks of 4K or 8K bytes. But having larger block sizes on disk increases block
fragmentation, leaving large portions of disk space unused. For instance, if the
logical block size is 8K bytes, then a file of size 12K bytes uses 1 complete block™
and half of a second block. The other half of the second block (4K bytes) is
wasted; no other file can use the space for data storage. If the sizes of files are
such that the number of bytes in the last block of a file is uniformly distributed,
then the average wasted space is half a block per file; the amount of wasted disk
space can be as high as 45% for a file system with logical blocks of size 4K bytes
[McKusick 84]. The Berkeley implementation remedies the situation by allocating
a block fragment to contain the last data in a file. One disk block can contain
fragments belonging to several files. An exercise in Chapter 5 explores some details
of the implementation.

The second extension to the classic inode structure described here is to store file
data in the inode (see [Mullender 84]). By expanding the inode to occupy an
entire disk block, a small portion of the block can be used for the inode structures
and the remainder of the block can store the entire file, in many cases, or the end
of a file otherwise.  The main advantage is that only one disk access is necessary to
get the inode and its data if the file fits in the inode block.

1. For a sample of 19,978 files, Mullender and Tannenbaum say that approximately 85% of the files
were smaller than 8K bytes and that 48% were smaller than 1K bytes. Although these percentages
will vary from one installation to the next, they are representative of many UNIX systems.
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4.3 DIRECTORIES

Recall from Chapter 1 that directories are the files that give the file system its
hierarchical structure; they play an important role in conversion of a file name to
an inode number. A directory is a file whose data is a sequence of entries, each
consisting of an inode number and the name of a file contained in the directory. A
path name is a null terminated character string divided into separate components
by the slash (“/””) character. Each component except the last must be the name of
a directory, but the last component may be a non-directory file. UNIX System V
restricts component names to a maximum of 14 characters; with a 2 byte entry for
the inode number, the size of a directory entry is 16 bytes.

Byte Offset  Inode Number  File Names
in Directory (2 bytes)
0 83
16 2 .
32 1798 init
48 1276 fsck
64 85 clri
80 1268 motd
96 1799 mount
112 88 mknod
128 2114 passwd
144 1717 umount
160 1851 checklist
176 92 fsdblb
192 84 config
208 1432 getty
224 0 crash
240 95 mkfs
256 188 inittab

Figure 4.10. Directory Layout for /etc

Figure 4.10 depicts the layout of the directory “etc”. Every directory contains
the file names dot and dot-dot (“.” and “..””) whose inode numbers are those of the
directory and its parent directory, respectively.. The inode number of “.”” in “/etc”
is located at offset 0 in the file, and its value is 83. The inode number of “.” is
located at offset 15, and its value is 2. Directory entries may be empty, indicated
by -an inode number of 0. For instance, the entry at address 224 in “/etc” is
empty, although it once contained an entry for a file named “crash”. The program
mkfs initializes a file system so that “.” and “..” of the root directory have the root
inode number of the file system.
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The kernel stores data for a directory just as it stores data for an ordinary filc,
using the inode structure and levels of direct and indirect blocks. Processes may
read directories in the same way they read regular files, but the kernel reserves
exclusive right to write a directory, thus insuring its correct structure. The access
permissions of a directory have the following meaning: read permission on a
directory allows a process to read a directory; write permission allows a process to
create new directory entries or remove old ones (via the creat, mknod, link, and
unlink system calls), thereby altering the contents of the directory; execute
permission allows a process to search the directory for a file name (it is meaningless
to execute a directory). Exercise 4.6 explores the difference between reading and
searching a directory.

4.4 CONVERSION OF A PATH NAME TO AN INODE

The initial access to a file is by its path name, as in the open, chdir (change
directory), or link system calls. Because the kernel works internally with inodes
rather than with path names, it converts the path names to inodes to access files.
The algorithm namei parses the path name one component at a time, converting
each component into an inode based on its name and the directory being searched,
and eventually returns the inode of the input path name (Figure 4.11).

Recall from Chapter 2 that every process is associated with (resides in) a-.

current directory; the u area contains a pointer to the current directory inode. The -

current directory of the first process in the system, process 0, is the root directory.”
The current directory of every other process starts out as the current directory of its
parent process at the time it was created (see Section 5.10). Processes change their
current directory by executing the chdir (change directory) system call. All path
name searches start from the current directory of the process unless the path name
starts with the slash character, signifying that the search should start from the root
directory. In either case, the kernel can easily find the inode where the path name
search starts: The current directory is stored in the process u area, and the system
root inode is stored in a global variable.?

Namei uses intermediate inodes as it parses a path name; call them working
inodes. The inode where the search starts is the first working inode. During each
iteration of the namei loop, the kernel makes sure that the working inode is indeed
that of a directory. Otherwise, the system would violate the assertion that non-
directory files can only be leaf nodes of the file system tree. The process must also
have permission to search the directory (read permission is insufficient). The user
ID of the process must match the owner or group ID of the file, and execute

2. A process can execute the chroot system call to change its notion of the file system root. The
_changed root is stored in the u area.
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algorithm namei /* convert path name to inode */
input: path name
output: locked inode
{
if (path name starts from root)
working inode = root inode (algorithm iget);
else
working inode = current directory inode (algorithm iget);

while (there is more path name)
{
read next path name component from input;
verify that working inode is of directory, access permissions OK;
if (working inode is of root and component is "..")
continue; /* loop back to while */
read directory (working inode) by repeated use of algorithms
bmap, bread and brelse;
if (component matches an entry in directory (working inode))
{
get inode number for matched component;
release working inode (algorithm iput);
working inode = inode of matched component (algorithm iget);
}
else /* component not in directory */
return (no inode);

)

return (working inode);

Figure 4.11. Algorithm for Conversion of a Path Name to an Inode

permission must be granted, or the file must allow search to all users. Otherwise
the search fails.

The kernel does a linear search of the directory file associated with the working
inode, trying to match the path name component to a directory entry name.
Starting at byte offset 0, it converts the byte offset in the directory to the
appropriate disk block according to algorithm bmap and reads the block using
algorithm bread. It searches the block for the path name component, treating the
contents of the block as a sequence of directory entries. If it finds a match, it
records the inode number of the matched directory entry, releases the block
(algorithm brelse) and the old working inode (algorithm iput), and allocates the
inode of the matched component (algorithm iget). The new inode becomes the
working inode. If the kernel does not match the path name with any names in the
block, it releases the block, adjusts the byte offset by the number of bytes in a
block, converts the new offset to a disk block number (algorithm bmap), and reads
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the next block. The kernel repeats the procedure until it matches the path name
component with a directory entry name, or until it reaches the end of the directory.

For example, suppose a process wants to open the file “/etc/passwd”. When the
kernel starts parsing the file name, it encounters *“/” and gets the system root
inode. Making root its current working inode, the kernel gathers in the string
“etc”. After checking that the current inode is that of a directory (“/’) and that
the process has the necessary permissions to search it, the kernel searches root for a
file whose name is “etc”: It accesses the data in the root directory block by block
and searches each block one entry at a time until it locates an entry for “etc”. On
finding the entry, the kernel releases the inode for root (algorithm iput) and
allocates the inode for “etc” (algorithm iget) according to the inode number of the
entry just found. After ascertaining that ‘“etc” is a directory and that it has the
requisite search permissions, the kernel searches “etc” block by block for a
directory structure entry for the file “passwd”. Referring to Figure 4.10, it would
find the entry for “passwd” as the ninth entry of the directory. On finding it, the
kernel releases the inode for “etc”, allocates the inode for “passwd”, and — since
the path name is exhausted — returns that inode.

It is natural to question the efficiency of a linear search of a directory for a path
name component. Ritchie points out (see page 1968 of [Ritchie 78b]) that a linear
search is efficient because it is bounded by the size of the directory. Furthermore,
early UNIX system implementations did not run on machines with large memory
space, so there was heavy emphasis on simple algorithms such as linear search
schemes. More complicated search schemes could require a different, more
complex, directory structure, and would probably run more slowly on small
directories than the linear search scheme.

4.5 SUPER BLOCK

So far, this chapter has described the structure of a file, assuming that the inode
was previously bound to a file and that the disk blocks containing the data were
already assigned. The next sections cover how the kernel assigns inodes and disk
blocks. To understand those algorithms, let us examine the structure of the super
block.

The super block consists of the following fields:

the size of the file system,

the number of free blocks in the file system,

a list of free blocks available on the file system,

the index of the next free block in the free block list,
the size of the inode list,

the number of free inodes in the file system,

a list of free inodes in the file system,

the index of the next free inode in the free inode list,

® © € © @ @ O ©
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o lock fields for the free block and free inode lists,
o a flag indicating that the super block has been modified.

The remainder of this chapter will explain the use of the arrays, indices and locks.
The kernel periodically writes the super block to disk if it had been modified so that
it is ‘consistent with the data in the file system.

4.6 INODE ASSIGNMENT TO A NEW FILE

The kernel uses algorithm iget to allocate a known inode, one whose (file system
and) inode number was previously determined. In algorithm namei for instance,
the kernel determines the inode number by matching a path name component to a
name in a directory. Another algorithm, ialloc, assigns a disk inode to a newly
created file. :

The file system contains a linear list of inodes, as mentioned in Chapter 2. An
inode is free if its type field is zero. When a process needs a new inode, the kernel
could theoretically search the inode list for a free inode. However, such a search
would be expensive, requiring at least one read operation (possibly from disk) for
every inode. To improve performance, the file system super block contains an array
to cache the numbers of free inodes in the file system.

Figure 4.12 shows the algorithm ialloc¢ for assigning new inodes. For reasons
cited later, the kernel first verifies that no other processes have locked access to the
super block free inode list. If the list of inode numbers in the super block is not
empty, the kernel assigns the next inode number, allocates a free in-core inode for
the newly assigned disk inode using algorithm iget (reading the inode from disk if
necessary), copies the disk inode to the in-core copy, initializes the fields in the
inode, and returns the locked inode. It updates the disk inode to indicate that the
inode is now in use: A non-zero file type field indicates that the disk inode is
assigned. In the simplest case, the kernel has a good inode, but race conditions
exist that necessitate more checking, as will be explained shortly. Loosely defined,
a race condition arises when several processes alter common data structures such
that the resulting computations depend on the order in which the processes
executed, even though all processes obeyed the locking protocol. For example, it is
implied here that a process could get a used inode. A race condition is related to
the mutual exclusion problem defined in Chapter 2, except that locking schemes
solve the mutual exclusion problem there but may not, by themselves, solve all race
conditions.

If the super block list of free inodes is empty, the kernel searches the disk and
places as many free inode numbers as possible into the super block. The kernel
reads the inode list on disk, block by block, and fills the super block list of inode
numbers to capacity, remembering the highest-numbered inode that it finds. Call
that inode the “remembered” inode; it is the last one saved in the super block. The
next time the kernel searches the disk for free inodes, it uses the remembered inode
as its starting point, thereby assuring that it wastes no time reading disk blocks
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élgorithm ialloc /* allocate inode */

input:

file system

output: locked inode

{

while (not done)

{

if (super block locked)
{
sleep (event super block becomes free);
continue; /* while loop */
}
if (inode list in super block is empty)
(
lock super block;
get remembered inode for free inode search;
search disk for free inodes until super block full,
or no more free inodes (algorithms bread and brelse);
unlock super block;
wake up (event super block becomes free);
if (no free inodes found on disk)
return (no inode);
set remembered inode for next free inode search;
)
/* there are inodes in super block inode list */
get inode number from super block inode list;
get inode (algorithm iget);
if (inode not free after all) /e m e/
{
write inode to disk;
release inode (algorithm iput);
continue; /* while loop */
i
/* inode is free */
initialize inode;
write inode to disk;
decrement file system free inode count;
return (inode);

Figure 4.12. Algorithm for Assigning New Inodes
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where no free inodes should exist. After gathering a fresh set of free inode
numbers, it starts the inode assignment algorithm from the beginning. Whénever
the kernel assigns a disk inode, it decrements the free inode count recorded in the
super block.

Super Block Free Inode List

..... frecinodes | g3 | 48 oreen STREY L
18 19 20 array 1
Tindex
Super Block Free Inode List
..... frecinodes | 83 | oodeen SR s
18 19 20 array 2
Tindex

(a) Assigning Free Inode from Middle of List

Super Block Free Inode List

e 70 L BIBY o
array 1
Tindex “(remembered inode)
Super_.B'iock Free Inode List array 2
333 free inodes 476 | 475 | 471
L R R R R R RN E R R REEY. (EEREICERY FUEEETIE FANEN b-
0 48 49 50

(b) Assigning Free Inode - Super Block List Empty

Figure 4.13. Two Arrays of Free Inode Numbers
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Consider the two pairs of arrays of free inode numbers in Figure 4.13. If the
list of free inodes in the super block looks like the first array in Figure 4.13(a)
when the kernel assigns an inode, it decrements the index for the next valid inode
number to 18 and takes inode number 48. If the list of {ree inodes in the super
block looks like the first array in Figure 4.13(b), it will notice that the array is
empty and search the disk for free inodes, starting from inode number 470, the
remembered inode. When the kernel fills the super block free list to capacity, it
remembers the last inode as the start point for the next search of the disk. The
kernel assigns an inode it just took from the disk (number 471 in the figure) and
continues whatever it was doing.

algorithm ifree /* inodc free */
input: file system inode number
output: none
{
increment file system free inode count;
if (super block locked)
return;
if (inode list full)
{
if (inode number less than remembered inode for search)
set remembered inode for search = input inode number;
)
else
store inode number in inode list;
return;

Figure 4.14. Algorithm for Freeing Inode

The algorithm for freeing an inode is much simpler. After incrementing the
total number of available inodes in the file system, the kernel checks the lock on the
super block. If locked, it avoids race conditions by returning immediately: The
inode number is not put into the super block, but it can be found on disk and is
available for reassignment. If the list is not locked, the kernel checks if it has room
for more inode numbers and, if it does, places the inode number in the list and
returns. If the list is full, the kernel may not save the newly freed inode there: It
compares the number of the freed inode with that of the remembered inode. If the
" freed inode number is less than the remembered inode number, it “remembers” the
newly freed inode number. discarding the old remembered inode number from the
super block. The inode is not lost, because the kernel can find it by searching the
inode list on disk. The kernel maintains the super block list such that the last inode
it dispenses from the list is the remembered inode. Ideally, there should never be
free inodes whose inode number is less than the remembered inode number, but
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Figure 4.15. Placing Free Inode Numbers into the Super Block

exceptions are possible.

Consider two examples of freeing inodes. If the super block list of free inodes
has room for more free inode numbers as in Figure 4.13(a), the kernel places the
inode number on the list, increments the'index to the next free inode, and proceeds.
But if the list of free inodes is full as in Figure 4.15, the kernel compares the inode
number it has freed to the remembered inode number that will start the next disk
search. Starting with the free inode list in Figure 4.15(a), if the kernel frees inode
499, it makes 499 the remembered inode and evicts number 535 from the free list.
If the kernel then frees inode number 601, it-does not change the contents of the
free list. When it later. uses up the inodes in the super block free list, it will search
the disk for free inodes starting from inode number 499, and find inodes 535 and
601 again.



82 INTERNAL REPRESENTATION OF FILES

Process A Process B Process C

Assigns inode 1
from super block

Sleeps while
reading inode (a)

Tries to assign inode
from super block

Super block empty (b)

Search for free
inodes on disk,
puts inode I
in super block (c)

Inode I in core
Does usual activity

Completes search,
assigns another inode (d)

Assigns inode I
from super block

I is in use!

{ Time Assign another inode (e)

Figure 4.16. Race Condition in Assigning Inodes

The preceding paragraph described the simple cases of the algorithms. Now
consider the case where the kernel assigns a new inode and then allocates an in-core
copy for the inode. The algorithm implies that the kernel could find that the inode
had already been assigned. Although rare, the following scenario shows such a case
(refer to Figures 4.16 and 4.17). Consider three processes, A, B, and C, and
suppose that the kernel, acting on behalf of process A, assigns inode I but goes to
sleep before it copies the disk inode into the in-core copy. Algorithms iget (invoked

3. As in the last chapter, the term “process™ here will mean “the kernel, acting on behalf of a pl_'OC%S."
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Figure 4.17. Race Condition in Assigning Inodes (continued)

by ialloc) and breqd (invoked by iget) give process A ample opportunity to go to
sleep. While process A is asleep, suppose process B attempts to assign a new inode
but discovers that the super block list of free inodes is empty. Process B searches
the disk for free inodes, and suppose it starts its search for free inodes at an inode
number lower than that of the inode that A is assigning. It is possible for process
B to find inode I free on the disk since process A is still asleep, and the kernel does
not know that the inode is about to be assigned. Process B, not realizing the
danger, completes its search of the disk, fills up the super block with (supposedly)
free inodes, assigns an inode, and departs from the scene. However, inode I is in
the super block free list of inode numbers. When process A wakes up, it completes
the assignment of inode I. Now suppose process C later requests an inode and
happens to pick inode I from the super block free list. When it gets the in-core
copy of the inode, it will find its file type set, implying that the inode was already
assigned. The kernel checks for this condition and, finding that the inode has been
assigned, tries to assign a new one. Writing the updated inode to disk immediately
after its assignment in ialloc makes the chance of the race smaller, because the file
type field will mark the inode in use.
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Locking the super block list of inodes while reading in a new set from disk
prevents other race conditions. If the super block list were not locked, a process
could find it empty and try to populate it from disk, occasionally sleeping while
waiting for I/O completion. Suppose a second process also tried to assign a new
inode and found the list empty. It, too, would try to populate the list from disk.
At best, the two processes are duplicating their efforts and wasting CPU power. At
worst, race conditions of the type described in the previous paragraph would be
more frequent. Similarly, if a process freeing an inode did not check that the list is
locked, it could overwrite inode numbers already in the free list while another
process was populating it from disk. Again, the race conditions described above
would be more frequent. Although the kernel handles them satisfactorily, system
performance would suffer. Use of the lock on the super block free list prevents
such race conditions.

4.7 ALLOCATION OF DISK BLOCKS

-When a process writes data to a file, the kernel must allocate disk blocks from the
file system for direct data blocks and, sometimes, for indirect blocks. The file
system super block contains an array that is used to cache the numbers of free disk
blocks in the file system. The utility program mkfs (make file system) organizes
the data blocks of a file system in a linked list, such that each link of the list is a
disk block that contains an array of free disk block numbers, and one array entry is
the number of the next block of the linked list. Figure 4.18 shows an example of
the linked list, where the first block is the super block free list and later blocks on
the linked list contain more free block numbers.

When the kernel wants to allocate a block from a file system (aigorithm alloc,
Figure 4.19), it allocates the next available block in the super block list. Once
allocated, the block cannot be reallocated until it becomes free. If the allocated
block is the last available block in the super block cache, the kernel treats it as a
pointer to a block that contains a list of free blocks. It reads the block, populates
the super block array with the new list of block numbers, and then proceeds to use
the original block number. "It allocates a buffer for the block and clears the buffer’s
data (zeros it). The disk block has now been assigned, and the kernel has a buffer
to-work with. If the file system contains no free blocks, the calling process receives
an error.

If a process writes a lot of data to a file, it repeatedly asks the systemn for blocks
to store the data, but the kernel assigns only one block at a time. The program
mkfs tries to organize the original linked list of free block numbers so that block
numbers dispensed to a file are near each other. This helps performance, because it
reduces disk seek time and latency when a process reads a file sequentially. Figure
4.18 depicts block numbers in a regular pattern, presumably based on the disk
rotation speed. Unfortunately, the order of block numbers on the free block linked
lists breaks down with heavy use as processes write files and remove them, because
block numbers enter and leave the free list at random. The kernel makes no
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Figure 4.18. Linked List of Free Disk Block Numbers

attempt to sort block numbers on the free list.

The algorithm free for freeing a block is the reverse-of the one for allocating a
block. If the super block list is not full, the block number of the newly freed block
is placed on the super block list. If, however, the super block list is full, the newly
freed block becomes a link block; the kernel writes the super block list into the
block and writes tHe block to disk. It then places the block number of the newly
freed block in the super block list: That block number is the only member of the
list. :
Figure 4.20 shows a sequence of alloc and free operations, starting with oné
entry on the super block free list. The kernel frees block 949 and places the block
number on the free list. It then allocates a block and removes block number 949
from the free list. Finally, it allocates a block and removes block number 109 from
the free list. Because the super block free list is now empty, the kernel replenishes
the list by copying in the contents of block 109, the next link on the linked list.
Figure 4.20(d) shows the full super block list and the next link block, block 211.

The algorithms for assigning and freeing inodes and disk blocks are similar in
that the kernel uses the super block as a cache containing indices of free resources,
block numbers, and inode numbers. It maintains a linked list of block numbers
such that every free block number in the file system appears in some element of the
linked list, but it maintains no such list of free inodes. There are three reasons for
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algorithm alloc  /* file system block allocation */
input: file system number
output: buffer for new block
({
while (super block locked)
sleep (event super. block not locked);
remove block from super block free list;
if (removed last block from free list)
{
lock super block;
read block just taken from free list (algorithm bread);
copy block numbers in block into super block;
release block buffer (algorithm brelse);
unlock super block;
wake up processes (event super block not locked);
)
get buffer for block removed from super block list (algorithm getblk);
zero buffer contents;
decrement total count of free blocks;
mark super block modified;
return buffer;

Figure 4.19. Algorithm for Allocating Disk Block

the different treatment.

1.

The kernel can determine whether an inode is free by inspection: If the file
type field is clear, the inode is free. The kernel needs no other mechanism to
describe free inodes. However, it cannot determine whether a block is free
just by looking at it. It could not distinguish between a bit pattern that
indicates the block is free and data that happened to have that bit pattern.
Hence, the kernel requires an external method to-identify free blocks, and
traditional implementations have ussd a linked list. -

Disk blocks lend themselves to the use of linked lists: A disk block easily
holds large lists of free block numbers. But inodes have no convenient place
for bulk storage of large lists of free inode numbers. '
Users tend to consume disk block resources more quickly than they consume
inodes, so the apparent lag in performance when searching the disk for free
inodes is not as critical as it would be for searching for free disk blocks.
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4.8 OTHER FILE TYPES

The UNIX system supports two other file types: pipes and special files. A pipe,
sometimes called a fifo (for “first-in-first-out”), differs from a regular file in that its
data is transient: Once data is read from a pipe, it cannot be read again. Also, the
data is read in the order that it was written to the pipe, and the system allows no
deviation from that order. The kernel stores data in a pipe the same way it stores
data in an ordinary file, except that it uses only the direct blocks, not the indirect
blocks. The next chapter will examine the implementation of pipes.

The last file types in the UNIX system are special files, including block device
special files and character device special files. Both types specify devices, and
therefore the file inodes do not reference any data. Instead, the inode contains two
numbers known as the major and minor device numbers. The major number
indicates a device type such as terminal or disk, and the minor number indicates
the unit number of the device. Chapter 10 examines special devices in detail.

4.9 SUMMARY

The inode is the data structure that describes the attributes of a file, including the
layout of its data on disk. There are two versions of the inode: the disk copy that
stores the inode information when the file is not in use and the in-core copy that
records information about active files. Algorithms ialloc and ifree control
assignment of a disk inode to a file during the creat, mknod, pipe, and unlink
system calls (next chapter), and the algorithms iget and iput control the allocation
of in-core inodes when a process accesses a file. Algorithm bmap locates the disk
blocks of a file, according to a previously supplied byte offset in the file. Directories
are files that correlate file name components to inode numbers. Algorithm namei
converts file names manipulated by processes to inodes, used internally by the
kernel. Finally, the kernel controls assignment of new disk blocks to a file using
algorithms alloc and free.

The data structures discussed in this chapter consist of linked lists, hash queues,
and linear arrays, and the algorithms that manipulate the data structures are
therefore simple. Complications arise due to race conditions caused by the
interaction of the algorithms, and the text has indicated some of these timing
problems. Nevertheless, the algorithms are not elaborate and illustrate the
simplicity of the system design.

The structures and algorithms explained here are internal to the kernel and are
-not visible to the user. Referring to the overall system architecture (Figure 2.1),
the algorithms described in this chapter occupy the lower half of the file subsystem.
The next chapter examines the system calls that provide the user interface to the
file system, and it describes the upper half of the file subsystem that invokes the
internal algorithms described here.



49

EXERCISES 89

4.10 EXERCISES

1.

2.

The C language convention counts array indices from 0. Why do inode numbers start
from 1 and not 0? v

If a process sleeps in algorithm iget when it finds the inode locked in the cache, why
must it start the loop again from the beginning after waking up?

Describe an algorithm that takes an in-core inode as input and updates the
corresponding disk inode.

The algorithms iget and iput do not require the. processor execution level to be raised
to block out interrupts. What does this imply?

How efficiently can the loop for indirect blocks in bmap be encoded?

mkdir junk
foriin12345
do

echo hello > junk/$i
done

Is —Id junk

Is —I junk
chmod —r junk
Is =1d junk

Is junk

Is =1 junk

cd junk

pwd

Is =1

echo *

cd..

chmod +r junk
chmod —x junk
Is junk

Is =1 junk

cd junk

chmod +x junk

Figure 4.21. Difference between Read and Search Permission on Directories

Execute the shell command script in Figure 4.21. It creates a directory “junk™ and
creates five files in the directory. After doing some control /s commands, the chmod
command turns off read permission for the directory. What happens when the various
Is commands are executed now? What happens after changing directory into “junk”?
After restoring read permission but removing execute (search) permission from “junk”,
repeat the experiment. What happens? What is happening in the kernel to cause this
behavior?

Given the current structure of a directory entry on a System V system, what is the
maximum number of files a file system can contain?



*10.

*11.

*12.

*13.

14.

*1S.

INTERNAL REPRESENTATION OF FILES

UNIX System V allows a maximum of 14 characters for a path name component.
Namei truncates extra characters in a component. How should the file system and
respective algorithms be redesigned to allow arbitrary length component names?
Suppose a user has a private version of the UNIX system but changes it so that a path
name component can consist of 30 characters; the private version of the operating
system stores the directory entries the same way that the standard operating system
does, except that the directory entries are 32 bytes long instead of 16. If the user
mounts the private file system on a standard system, what would happen in algorithm
namei when a process accesses a file on the private file system?

Consider the algorithm namei for converting a path name into an inode. As the search
progresses, the kernel checks that the current working inode is that of a directory. Is
it possible for another process to remove (unlink) the directory? How can the kernel
prevent this? The next chapter will come back to this problem.

Design a directory structure that improves the efficiency of searching for path names
by avoiding the linear search. Consider two techniques: hashing and n-ary trees.
Design a scheme that reduces the number of directory searches for file names by
caching frequently used names.

Ideally, a file system should never contain a free inode whose inode number is less than
the “remembered” inode used by ialloc. How is it possible for this assertion to be
false?

The super block is a disk block and contains other information besides the free block
list, as described in this chapter. Therefore, the super block free list cannot contain as
many free block numbers as can be potentially stored in a disk block on the linked list
of free disk blocks. What is the optimal number of free block numbers that should be
stored in a block on the linked list?

Discuss a system implementation that keeps track of free disk blocks with a bit map
instead of a linked list of blocks. What are the advantages and disadvantages of this
scheme?



SYSTEM CALLS
FOR THE FILE SYSTEM

The last chapter described the internal data structures for the file system and the
.algorithms that manipulate them. This chapter deals with system calls for the file -
system, using the concepts explored in the previous chapter. It starts with system"
calls for accessing existing files, such as open, read, write, Iseek, and close, then
presents system calls to create new files, namely, creat and mknod, and then
examines the system calls that manipulate the inode or that maneuver through the
file system: chdir, chroot, chown, chmod, stat, and fstat. It investigates more
advanced system calls: pipe and dup are important for the implementation of pipes
in the shell; mount and umount extend the file system tree visible to users; /ink and
unlink change the structure of the file system hierarchy. Then, it presents the
notion of file system abstractions, allowing the support of various file systems as
long as they conform to standard interfaces. The last section in the chapter covers
file system maintenance. The chapter introduces three kernel data structures: the
file table, with one entry allocated for every opened file in the system, the user file
descriptor table, with one entry allocated for every file descriptor known to a
process, and the mount table, containing information for every active file system.

Figure 5.1 shows the relationship between the system ‘calls and the algorithms
described previously. It classifies the system calls into several categories, although
scme system calls appear in more than one category:

91
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File System Calls

;t.'l'lmi ~ Use of Assign|  File File | File Sys Tree
D:.s?: namei inodes| Attributes | I/O jStructure Manipulation
open open  stat
creat link | creat
. h .
c(nl-zat chdir unlink| mknod :::hr(::;g ;er?i mount chdir
UP | chroot mknod| link umount chown
pipe | . stat Iseek
close chown mount| unlink
chmod umount

Lower Level File System Algorithms
namei

.iget iput ialloc ifree | alloc free bmap

puffer allocation algonthms

getblk brelse bread breada bwrite

Figure 5.1. File System Calls and Relation to Other Algorithms

e System calls that return file descriptors for use in other system calls;

o System calls that use the namei algorithm to parse a path name;

o System calls that assign and free inodes, using algorithms ialloc and ifree;

e System calls that set or change the attributes of a file;

e System calls that do I/O to and from a process, using algorithms alloc, free,
and the buffer allocation algorithms;

e System calls that change the structure of the file system;

e System calls that allow a process to change its view of the file system tree.

5.1 OPEN

The open system call is the first step a process must take to access the data in a
file. The syntax for the open system call is

fd = open(pathname, flags, modes);

where pathname is a file name, flags indicate the type of open (such as for reading
‘or writing), and modes give the file permissions if the file is being created. The
open system call returns an integer' called the user file descriptor. Other file
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operations, such as reading, writing, seeking, duplicating the file descriptor, setting
file I/0 parameters, determining file status, and closing the file, ‘use the file
descriptor that the open system call returns.

The kernel searches the file system for the file name parameter using algorithm
namei (see Figure 5.2). It checks permissions for opening the file after it finds the
in-core inode and allocates an entry in the file table for the open file. The file table
entry contains a pointer to the inode of the open file and a field that indicates the
byte offset in the file where the kernel expects the next read or write to begin. The
kernel initializes the offset to 0 during the open call, meaning that the initial read
or write starts at the beginning of a file by default. Alternatively, a process can
open a file in write-append mode, in which case the kernel initializes the offset to
the size of the file. The kernel allocates an entry in a private table in the process u
area, called the user file descriptor table, and notes the index of this entry. The
index is the file descriptor that is returned to the user. The entry in the user file
table points to the entry in the global file table.

algorithm open
inputs: file name
type of open
file permissions (for creation type of open)
output: file descriptor
{
convert file name to inode (algorithm namei);
if (file does not exist or not permitted access)
return(error);
allocate file table entry for inode, initialize count, offset;
allocate user file descriptor entry, set pointer to file table entry;
if (type of open specifies truncate file)
free all file blocks (algorithm free);
unlock(inode); /* locked above in namei */
return(user file descriptor);

Figure 5.2. Algorithm for Opening a File

Suppose a process executes the following code, opening the file “/etc/passwd”
twice, once read-only and once write-only, and the file “local” once, for reading and
writing.?

1. All system calls return the value —1 if they fail The return value —1 will not be explicitly
mentioned when discussing the syntax of the system calls.

2. The definition of the open system call specifies threc parameters (the third is used for the create
mode of open), but programmers usually use only the first two. The C compiler does not check that
the number of parameters is correct. System implementations. typically pass the first two parameters
and a third “garbage” parameter (whatever happens to be on the stack) to the kernel. The, kernel
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user file
descriptor table file table inode table
0
1
2
3 ~
; . colém(/tztc/passwd]
. AN count e
6 A Y 1 Read
] —
b 1™ Rd-Wrt
co;mt (local)
) .
| count o
1 Write

Figure 5.3. Data Structures after Open

fd1 = open(“/etc/passwd”, O RDONLY);
fd2 = open(“local”’, O RDWR);
fd3 = open(“/etc/passwd”, O WRONLY);

Figure 5.3 shows the relationship between the inode table, file table, and user file
descriptor data structures. Each open returns a file descriptor to the process, and
the corresponding entry in the user file descriptor table points to a unique entry in

does not check the third parameter unless the second parameter indicates that it must, allowing
programmers to encode only two parameters.
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user file
descriptor tables
(proc A) file table inode table
0
1 i
2 : :
; s
g \\ : co;m(/etc/passwd)
. \\ \ count  pead”]
: 1 :
{proc B) L :
0 : :
! count E
2 1 Rd-Wrf] :
3 ~ - :
4 Y :
5 \ : A co:mt (local)
; 7
: \ c01lmt Read '
: !; :
count Write count .
1 / 1 (private)
t = :
co;m Read :

Figure 5.4. Data Structures after Two Processes Open Files
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the kernel file table even though one file (““/etc/passwd™) is opened twice. The file
table entries of all instances of an open file point to one entry in the in-core inode
table. The process can read or write the file “/etc/passwd” but only through tile
descriptors 3 and S in the figure. The kernel notes the capability to read or write
the file in the file table entry allocated during the open call. Suppose a second
process executes the following code.

fd1 = open(“‘/etc/passwd”, O_RDONLY);
fd2 = open(“private”, O_RDONLY);

Figure 5.4 shows the relationship between the appropriate data structures while
both processes (and no others) have the files open. Again, each open call results in
allocation of a unique entry in the user file descriptor table and in the kernel file
table, but the kernel contains at most one entry per file in the in-core inode table.

The user file descriptor table entry could conceivably contain the file offset for
the position of the next I/O operation and point directly to the in-core inode entry
for the file, eliminating the need for a separate kernel file table. The examples
above show a one-to-one relationship between user file descriptor entries and kernel
file table entries. Thompson notes, however, that he implemented the file table as a
separate structure to allow sharing of the offset pointer between several user file
descriptors (see page 1943 of [Thompson 78]). The dup and fork system calls,
explained in Sections 5.13 and 7.1, manipulate the data structures to allow such
sharing.

The first three user file descriptors (0, 1, and 2) are called the standard input,
standard output, and standard error file descriptors. Processes on UNIX systems
conventionally use the standard input descriptor to read input data, the standard
output descriptor to write output data, and the standard error descriptor to write
error data (messages). Nothing in the operating system assumes that these file
descriptors are special. A group of users could adopt the convention that file
descriptors 4, 6, and 11 are special file descriptors, but counting from 0 (in C) is
much more natural. Adoption of the convention by all user programs makes it easy
for them to communicate via pipes, as will be seen in Chapter 7. Normally, the
control terminal (see Chapter 10) serves as standard input, standard output and
standard error.

5.2 READ
The syntax of the read system call is
number = read(fd, buffer, count)

where fd is the file descriptor returned by open, buffer is the address of a data
structure in the user process that will contain the read data on successful
completion of the call, count is the number of bytes the user wants to read, and
number is the number of bytes actually read. Figure 5.5 depicts the algorithm read
for reading a regular file. The kernel gets the file table entry that corresponds to
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algorithm read
input: user file descriptor
address of buffer in user process
number of bytes to read
output: count of bytes copied into user space
{
get file table entry from user file descriptor;
check file accessibility;
set parameters in u area for user address, byte count, I/0 to user;
get inode from file table;
lock inode;
set byte offset in u area from file table offset;
while (count not satisfied)
{
convert file offset to disk block (algorithm bmap);
calculate offset into block, number of bytes 10 read;
if (number of bytes to read is 0)
/* trying to read end of file */
break; /* out of loop */
read block (algorithm breada if with read ahead, algorithm
bread otherwise);
copy data from system buffer to user.address;
update u area fields for file byte offset, read count,
address to write into user space;
release buffer; /* locked in bread */
}
unlock inode;
‘update file table offset for next read;
return(total numbes of bytes read);

Figure 5.5. Algorithm for Reading a File

the user file descriptor, following the pointer in Figure 5.3. It now sets several I/0
parameters in the u area (Figure 5.6), eliminating the need to pass them as
function parameters. Specifically, it sets the I/O mode to indicate that a read is
being done, a flag to indicate that the I/O will go to user address space, a count
field to indicate the number of bytes to read, the target address of the user data
buffer, and finally, an offset field (from the file table) to indicate the byte offset
into the file where the I/0 should begin. After the kernel sets the I/O parameters
in the u area, it follows the pointer from the file table entry to the inode, locking
the inode before it reads the file.

The algorithm now goes into a loop until the read is satisfied. The kernel
converts the file byte offset into a block number, using algorithm bmap, and it
notes the byte offset in the block where the 1/0 should begin and how many bytes
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mode indicates read or write

count count of bytes to read or write

offset byte offset in file

address  target address to copy data, in user or kernel memory
flag indicates if address is in user or kernel memory

Figure 5.6. 1/0 Parameters Saved in U Area

in the block it should read. After reading the block into a buffer, possibly using
block read ahead (algorithms bread and breada) as will be described, it copies the
data from the block to the target address in the user process. It updates the 1/0
parameters in the u area according to the number of bytes it read, incrementing the
file byte offset and the address in the user process where the next data should be
delivered, and decrementing the count of bytes it needs to read to satisfy the user
read request. If the user request is not satisfied, the kernel rcpeats the entire cycle,
converting the file byte offset to a block number, reading the block from disk to a
system buffer, copying data from the buffer to the user process, releasing the buffer,
and updating I/O parameters in the u area. The cycle completes either when the
kernel completely satisfies the user request, when the file contains no more data, or
if the kernel encounters an error 1n reading the data from disk or in copying the
data to user space. The kernel updates the offset in the file table according to the
number of bytes it actually read; consequently, successive reads of a file deliver the
file data in sequence. The Iseek system call (Section 5.6) adjusts the value of the
file table offset and changes the order in which a process reads or writes a file.

#include <fentlh>
main ()
{
int fd;
char lilbuf{20], bigbuf{1024];

fd = open(“/etc/passwd”, O_RDONLY);
read (fd, lilbuf, 20);

read(fd, bigbuf, 1024);

read (fd, lilbuf, 20);

Figure 5.7. Sample Program for Reading a File

Consider the program in Figure 5.7. The open returns a file descriptor that the
user assigns to the variable fd and uses in the subsequent read calls. In the read
system call, the kernel verifies that the file descriptor parameter is legal, and that
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the process had previously opened the file for reading. It stores the values lilbuf,
20, and O in the u area, corresponding to the address of the user buffer, the byte
count, and the starting byte offset in the file. It calculates that byte offset 0 is in
the Oth block of the file and retrieves the entry for the Oth block in .the inode.
Assuming such a block exists, the kernel reads the entire block of 1024 bytes into a
buffer but copies only 20 bytes to the user address /ilbuf. It increments the u area
byte offset to 20 and decrements the count of data to read to 0. Since the read has
been satisfied, the kernel resets the file table offset to 20, so that subsequent reads
on the file descriptor will begin at byte 20 in the file, and the system call returns
the number of bytes actually read, 20.

For the second read call, the kernel again verifies that the descriptor. is “legal
and that the process had opened the file for reading, because it has no way' of
knowing that the user read request is for the same fite that was determined to be
legal during the .last read. It stores in the u area the user address bigbuf, the
number of bytes the process wants to read, 1024, and the starting offset in the file,
20, taken from the file table. It converts the file byte offset to the correct disk
block, as above, and reads the block. If the time between read calls-is small,
chances are good that the block will be in the buffer cache. But the kernel cannot
satisfy the read request entirely from the buffer, because only 1004 out of the 1024
bytes for this request are in the buffer. So it copies the last 1004 bytes from the
buffer into the user data structure bigbuf and updates the parameters in the « area
to indicate that the next iteration of the read loop starts at byte 1024 in the file,
that the data should be copied to byte position 1004 in bighuf, and that the number
of bytes to to satisfy the read request is 20. '

The kernel now cycles to the beginning of the loop in the read algorithm. It
converts byte offset 1024 to logical block offset 1, looks up the second direct block
number in the inode, and finds the correct disk block to read. It reads the block
from the buffer cache, reading the block from disk if it is not in the cache. Finally,
it copies 20 bytes from the buffer to the correct address in the user process. Before
leaving the system call, the kernel sets the offset field in the file table entry to 1044,
the byte offset that should.be accessed next. For the last read call in the example,
the kernel proceeds as ‘in the first read call, except that it starts reading at byte
1044 in the file, finding that value in the offset field in the file table entry for the
descriptor.

The example shows how advantageous it is for I/O requests to start on file
system block boundcaries and to be multiples of the block size. Doing so allows the
kernel to avoid an extra iteration in the read algorithm loop, with the consequent
expense of accessing the inode to find the correct block number for the data and
competing with other processes for access to the buffer pool. The standard 1/0
library was written to hide knowledge of the kernel buffer size from users; its use
avoids the performance penalties inherent in processes that nibble at the file system
inefficiently (see exercise 5.4).

As the kernel goes through the read loop, it"determines whether a file is subject
_ to read-ahead: if a process reads two blocks sequentially, the kernel assumes that
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all subsequent reads will be sequential until proven otherwise. During each
iteration through the loop, the kernel saves the next logical block number in the in-
core inode and, during the next iteration, compares the current logical block
number to the value previously saved. If they are equal, the kernel calculates the
physical block number for read-ahead and saves its value in the u area for use in
the breada algorithm. Of course, if a process does not read tothe end of a block,
the kernel does not invoke read-ahead for the next block.

Recall from Figure 4.9 that it is possible for some block numbers in an inode or
in indirect blocks to have the value 0, even though later blocks have nonzero value.
If a process attempts to read data from such a block, the kernel satisfies the request
by allocating an arbitrary buffer in the read loop, clearing its contents to 0, and
copying it to the user address. This case is different from the case where a process
encounters the end of a file, meaning that no data was ever written to any location
beyond the current point. When encountering end of file, the kernel returns no
data to the process (see exercise 5.1).

When a process invokes the read system call, the kernel locks the inode for the
duration . of the call. Afterwards, it could go to sleep reading a buffer associated
with data or with indirect blocks of the inode. If another process were allowed to
change the file while the first process was sleeping, read could return inconsistent
data. For example, a process may read several blocks of a file; if it slept while
reading the first block and a second process were to write the other blocks, the
returned data would contain a mixture of old and new data. Hence, the inode is
left locked for the duration of the read call, affording the process a consistent view
of the file as it existed at the start of the call.

The kernel can preempt a reading process between system calls in user mode

. and schedule other processes to run. Since the inode is unlocked at the end of a
system call, nothing prevents other processes from accessing the file and changing
its contents. It would be unfair for the system to keep an inode locked from the
time a process opened the file until it closed the file, because one process could
keep a file open and thus prevent other processes from ever accessing it. If the file
was “/etc/passwd”, used by the login process to check a user’s password, then one
malicious (or, perhaps, just errant) user could prevent all other users from logging
in. To avoid such problems, the kernel unlocks the inode at the end of each system
call that uses it. If another process changes the file between the two read system
calls by the first process, the first process may read unexpected data, but the kernel
data structures are consistent. '

For example, suppose the kernel executes the two processes in Figure 5.8
concurrently. Assuming both processes complete their open calls before either one
starts its read or write calls, the kernel could execute the read and write calls in
any of six sequences: readl, read2, writel, write2, or readl, writel, read2, write2,
or readl, writel, write2, read2, and so on. The data that process A reads depends
on the order that the system executes the system calls of the two processes; the
system does not guarantee that the data in the file remains the same after opening

" the file. Use of the file and record locking feature (Section 5.4) allows a process to
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#include <fentlh>
/* process A */
main()
{
int fd;
char buff512];
fd = open(“/etc/passwd”, O_RDONLY);
read (fd, buf, sizeof (buf)); /* readl */
read(fd, buf, sizeof (buf)); /* read2 */
}

/* process B */
main()
{
int fd, i;
char bufl512];
for (i = 0; i < sizeof(buf); i++)

bufli] = ’a’;
fd = open(‘“/etc/passwd”, O WRONLY);
write(fd, buf, sizeof(buf)); /* writel */
write(fd, buf, sizeof (buf)); /* write2 */

Figure 5.8. A Reader and a Writer Process

guarantee file consistency while it has a file open.

‘Finally, the program in Figure 5.9 shows how a process can open a file more
than once and read it via different file descriptors. The kernel manipulates the file
table offsets associated with the two file descriptors independently, and hence, the
arrays bufl and buf2 should be identical when the process completes, assuming no
other process writes “/etc/passwd” in the meantime.

5.3 WRITE
The syntax for the write system call is
number = write(fd, buffer, count);

where the nfeaning of the variables fd, buffer, count, and number are the same as
they are for the read system call. The algorithm for writing a regular file is similar
to that for reading a regular file. However, if the file does not coritain a block that
corresponds”to the byte offset to be written, the kernel allocates a new block using
algorithm alloc and assigns the block number to the correct position in the inode’s
table of contents. If the byte offset is that of an indirect block. the kernel may
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#include ,<fcntl.h>
main()
{
int fd1, fd2;
char buf1[512], buf2[512];

fd1 = open(““/etc/passwd”, O_ RDONLY);
fd2 = open(“/etc/passwd”, O_RDONLY);
read(fd1, bufl, sizeof(bufl));
read(fd2, buf?2, sizeof (buf2));

}

Figure 5.9. Reading a File via Two File Descriptors

" have to allocate several blocks for use as indirect blocks and data blocks. The
inode is locked for the duration of the write, because the kernel may change the
inode when allocating new blocks; allowing other processes access to the file could
corrupt the inode if several processes allocate blocks simultaneously for the same
byte -offsets. When the write is complete, the kernel updates the file size entry in
the inode if the file has grown larger.

For example, suppose a process writes byte number 10,240 to a file, the
highest-numbered byte yet written to the file. When accessing the byte in the file
using algorithm bmap, the kernel will find not only that the file does not contain a
block for that byte but also that it does not contain the necessary indirect block. It
assigns a disk block for the indirect block and writes the block number in the in-
core inode. Then it assigns a disk block. for the data block and writes its block
number into the first position in the newly assigned indirect block.

The kernel goes through an internal loop, as in the read algorithm, writing one
block to disk during each iteration. During each iteration, it determines whether it
will write the entire block ortonly part of it. If it writes only part of a block, it
must first read the block from disk so as not,to overwrite the parts that will remain
the same, but if it writes the whole block, it need not read the block, since it will
overwrite its previous contents anyway. The write proceeds block by block, but the
kernel uses a delayed write (Section 3.4) to write the data to disk, caching it in
case another process should read or write it soon and avoiding extra disk operations.
Delayed write is probably most effective for pipes, because another process is
reading the pipe and removing its data (Section 5.12). But even for regular files,

“delayed write is effective if the file is created temporarily and will be read soon.
For example, many programs, such as editors and mail, create temporary files in
the directory “/tmp” and quickly remove them. Use of delayed write car reduce
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the number of disk writes for temporary files.

5.4 FILE AND RECORD LOCKING

The original UNIX system developed by Thompson and Ritchie did not have an
internal mechanism by which a process could insure exclusive access to a file. A
locking mechanism was considered unnecessary because, as Ritchie notes, “we are
not faced with large, single-file databases maintained by independent processes”
(see [Ritchie 81]). To make the UNIX system more attractive to commercial users
with database applications, System V now contains file and record locking
mechanisms. File locking is the capability to prevent other processes from reading
or writing any part of an entire file, and record locking is the capability to prevent
other processes from reading or writing particular records (parts of a file between
particular byte offsets). Exercise 5.9 explores the implementation of file and record
locking.

5.5 ADJUSTING THE POSITION OF FILE I/0 — LSEEK

The ordinary use of read and write system calls provides sequential access to a file,
but processes can use the Iseek system call to position the I/O and allow random
access to a file. The syntax for the system call is

position = Iseek(fd, offset, reference);

where fd is the file descriptor identifying the file, offset is a byte offset, and
reference indicates whether offset should be considered from the beginning of the
file, from the current position of the read/write offset, or from the end of the file.
The return value, position, is the byte offset where the next read or write will start.
In the program in Figure 5.10, for example, a process opens a file, reads a byte,
then invokes /seek to advance the file table offset value by 1023 (with reference 1),
and loops. Thus, the program reads every 1024th byte of the file. If the value of
reference is 0, the kernel seeks from the beginning of the file, and if its value is 2,
the kernel seeks beyond the end of the file. The Iseek system call has nothing to do
with the seek operation that positions a disk arm over a particular disk sector. To
implement Iseek, the kernel simply adjusts the offset value in the file table;
subsequent read or write system calls use the file table offset as their starting byte
off set.

5.6 CLOSE

A process closes an open file when it no longer wants to access it. The syntax for
the close system call is
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#include <fentl.h>
main(argc, argv)

int argc;

char *argvl];

int fd, skval;
char c;

if (argc !=2)
exit(Q;
fd = open(argv(1], O_RDONLY);
if (fd == —1)
exitQ;
while ((skval = read(fd, &c, 1)) ==1)
{
printf(“char %c\n”, c);
skval = Iseek(fd, 1023L, 1);
printf(“new seek val %d\n”, skval);

Figure 5.10. Program with Lseek System Call

close(fd);

where fd is the file descriptor for the open file. The kernel does the close operation
by manipulating the file descriptor and the corresponding file table and inode table
entries. If the reference count of the file table entry is greater than 1 because of
dup or fork calls, then other user file descriptors reference the file table entry, as
will be seen; the kernel decrements the count and the close completes. If the file
table reference count is 1, the kernel frees the entry and releases the in-core inode
originally allocated in the open system call (algorithm iput). If other processes still
reference the inode, the kernel decrements the inode reference count but leaves it
allocated; otherwise, the inode is free for reallocation because its reference count is
0. When the close system call completes, the user file descriptor table entry is
empty. Attempts by the process to use that file descriptor result in an error until
the file descriptor is reassigned as a result of another system call. When a process
exits, the kernel examines its active user file descriptors and internally closes each
one. Hence, no process can keep a file open after it terminates.

For example, Figure 5.11 shows the relevant table entries of Figure 5.4, after
the second process closes its files. The entries for file descriptors 3 and 4 in the
user file descriptor table are empty. The count fields of the file table entries are
now 0, and the entries are empty. The inode reference count for the files
“/etc/passwd” and “private” are also decremented. The inode entry for *“private”
is on the free list because its reference count is 0, but its entry is not empty. If
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Figure 5.11. Tables after Closing a File

another process accesses the file “private” while the inode is still on the free list,
the kernel will reclaim the inode, as explained in Section 4.1.2.

5.7 FILE CREATION

The open system call gives a process access to an existing file,-but the creat system
call creates a new file in the system. The syntax for the creat system call is

fd = creat(pathname, modes);
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where the variables pathname, modes, and fd mean the same as they do in the
open svstem call. If no such file previously existed, the kernel creates a new file
with the specified name and permission modes; if the file already existed, the kernel
truncates the file (releases all existing data blocks and sets the file size to 0) subject
to suitable file access permissions.® Figure 5.12 shows the algorithm for file
creation.

algorithm creat
input: file name
permission settings
output: file descriptor
{
get inode for file name (algorithm namei);
if (file already exists)
{
if (not permitted access)
{
release inode (algorithm iput);
return(error);

}
else /* file does not exist yet */
{
assign free inode from file system (algorithm ialloc);
create new directory entry in parent directory: include
new file name and newly assigned inode number;
)
allocate file table entry for inode, initialize count;
if (file did exist at time of create)
free all file blocks (algorithm free);
unlock (inode);
return(user file descriptor);

Figure 5.12. Algorithm for Creating a File

The kernel parses the path name using algorithm namei, following the
algorithm literally while parsing directorv names. However, when it arrives at the
last component of the path name, namely, the file name that it will create, namei

3. The open system call specifies twe flags, O_CREAT (create) and O_TRUNC (truncate): If a process
specifies the O CREAT flag on an open and the file does not exist, the kernel will create the file. If
the file already exists, it will not be truncated unless the O_TRUNC flag is also set.
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notes the byte offset of the first empty directory slot in the directory and saves the
offset in the u area. If the kernel does not find the path name component in the
directory, it will eventually write the name into the empty slot just found. If the
directory has no empty slots, the kernel remembers the offset of the end of the
directory and creates a new slot there. It also remembers the inode of the directory
being searched in its u area and keeps the inode locked; the directory will become
the parent directory of the new file. The kernel does not write the new file name
into the directory yet, so that it has less to undo in event of later errors. It checks
that the directory allows the process write permission: Because a process will write
the directory as a result of the creat call, write permission for a directory means
that processes are allowed to create files in the directory.

Assuming no file by the given name previously existed, the kernel assigns an
inode for the new file, using algorithm ialloc (Section 4.6). It then writes the new
file name component and the inode number of the newly allocated inode in the
parent directory, at the byte offset saved in the u area. Afterwards, it releases the
inode of the parent directory, having held it from the time it searched the directory
for the file name. The parent directory now contains the name of the new file and
its inode number. The kernel writes the newly allocated inode to disk (algorithm
bwrite) before it writes the directory with the new name to disk. If the system
crashes between the write operations for the inode and the directory, there will be
an allocated inode that is not referenced by any path name in the system but the -
system will function normally. If, on the other hand, the directory were written
before the newly allocated inode and the system crashed in the middle, the file
system would contain a path name that referred to a bad inode. (See Section
5.16.1 for more detail.)

If the given file already existed before the creat, the kernel finds its inode while
searching for the file name. The old file must allow write permission for a process
to create a “new” file by the same name, because the kernel changes the file
contents during the creat call: It truncates the file, freeing all its data blocks using
algorithm free, so that the file looks like a newly created file. However, the owner
and permission modes of the file are the same as they were for the original file:
The kernel does not reassign ownership to the owner of the process, and it ignores
the permission modes specified by the process. Finally, the kernel does not check
that the parent directory of the existing file allows write permission, because it will
not change the directory contents.

The creat system call proceeds according to the same algorithm as the open
system call. The kernel allocates an entry in the file table for the created file so
that the process can write the file, allocates an entry in the user file descriptor
table, and eventually returns the index to the latter entry as the user file descriptor.

5.8 CREATION OF SPECIAL FILES

The system call mknod creates special files in the system, including named pipes,
device files, and directories. It is similar to creat in that the kernel allocaies an
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inode for the file. The syntax of the mknod system call is
mknod (pathname, type and permissions, dev)

where pathname is the name of the node to be created, type and permissions give
the node type (directory, for example) and access permissions for the new file to be
created, and dev specifies the major and minor device numbers for block and
character special files (Chapter 10). Figure 5.13 depicts the algorithm mknod for
making a new node.

"| algorithm make new node
inputs: node (file name)
file type
permissions
major, minor device number (for block, character special files)
output: none
{ .
if (new node not named pipe and user not super user)
return(error);
get inode of parent of new node (algorithm namei);
if (new node already exists)
{
release parent inode (algorithm iput);
return(error);
}
assign free inode from file system for new node (algorithm ialloc);
create new directory entry in parent directory: include new node
name and newly assigned inode number;
release parent directory inode (algorithm iput);
if (new node is block or character special file) -
write major, minor numbers into inode structure;
release new node inode (algorithm iput);

Figure 5.13. Algorithm for Making New Node

The kernel searches the file system for the file name it is about to create. If the
file does not yet exist, the kernel assigns a new inode on the disk and writes the new
file name and inode number into the parent directory. It sets the file type field in
the inode to indicate that the file type is a pipe, directory or special file. Finally, if
the file is a character special or block special device file, it writes the major and
minor device numbers into the inode. If the mknod call is creating a directory
node, the node will exist after the system call completes but its contents will be in
the wrong format (there are no directory entries for “.” and *..”). Exercise 5.33
considers the other steps needed to put a directory into the correct format.
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algorithm change directory
input: new directory name
output: none
{
get inode for new directory name (algorithm namei);
if (inode not that of directory or process not permitted access to file)

release inode (algorithm iput);
return(error);
1
unlock inode;
release "old" current directory inode (algorithm iput);
place new inode into current directory slot in u area;

Figure 5.14. Algorithm for Changing Current Directory

5.9 CHANGE DIRECTORY AND CHANGE ROOT

When the system is first booted, process 0 makes the file system root its current
directory during initialization. It executes the algorithm iget on the root inode,
saves it in the u area as its current directory, and releases the inode lock. When a
new process is created via the fork system call, the new process inherits the current
directory of the old process in its u area, and the kernel increments the inode
reference count accordingly.

The algorithm chdir (Figure 5.14) changes the current directory of a process.
The syntax for the chdir system call is

chdir(pathname);

where pathname is the directory that becomes the new current directory of the
process. The kernel parses the name of the target directory using algorithm namei
and checks that the target file is a directory and that the process owner has access
permission to the directory. It releases the lock to the new inode but keeps the
inode allocated and its reference count incremented, releases the inode of the old
current directory (algorithm iput) stored in the u area, and stores the new inode ir
the u area. After a process changes its current directory, algorithm namei uses the
inode for the start directory to search for all path names that do not begin from
root. After execution of the chdir system call, the inode reference count of the new
directory is at least one, and the inode reference count of the previous current
directory may be 0. In this respect, chdir is similar 'to the open system call,
because both system calls access a file and leave its inode allocated. The inode
allocated during the chdir system call is released only when the process executes
another chdir call or when it exits.
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A process usually uses the global file system root for all path names starting
with “/”. The kernel contains a global variable that points to the inode of the
global root, allocated by iget when the systém is booted. Processes can change their
notion of the file system root via the chroot system call. This is useful if a user
wants to simulate the usual file system hierarchy and run processes there. Its
syntax is

chroot(pathname);

where pathname is the directory that the kernel subsequently treats as the process’s
root directory. When executing the chroot system call, the kernel follows the same
algorithm as for changing the current directory. It stores the new root inode in the
process u area, unlocking the inode on completion of the system call. However,
since the default root for the kernel is stored in a global variable, it does not release
the inode of the old root automatically, but only if it or an ancestor process had
executed the chroot system call. The new inode is now the logical root of the file
system for the process (and all its children), meaning that all path name searches
in algorithm namei that start from root (“/””) start from this inode, and that all
attempts to use “.” over the root will leave the working directory of the process in
the new root. A process bestows new child precesses with its changed root, just as
it bestows them with its current directory.

5.10 CHANGE OWNER AND CHANGE MODE

Changing the owner or mode (access permissions) of a file are operations on the
inode, not on the file per se. The syntax of the calls is

chown(pathname, owner, group)'
chmod (pathname, mode)

To change the owner of a file, the kernel converts the file name to an inode using
algorithm namei. The process owner must be superuser or match that of the file
owner (a process cannot give away something that does not belong to it). The
kernel then assigns the new owner and group to the file, clears the set user and set
group flags (see Section 7.5), and releases the inode via algorithm iput. After the
change of ownership, the old owner loses “owner” access rights to the file. To
change the mode of a file, the kernel follows a similar procedure, changing the
mode flags in the inode instead of the owner numbers.

5.11 STAT AND FSTAT

The system-calls stat and fstat allow processes to query the status of files, returning
information such as the file type, file owner, access permissions, file size, number of
links, inode number, and file access times. The syntax for the system calls is
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stat(pathname, statbuffer);
fstat(fd, statbuffer);

where pathname is a file name, fd is a file descriptor returned by a previous open
call, and statbuffer is the address of a data structure in the user process that will
contain the status information of the file on completion of the call. The system
calls simply write the fields of the inode into statbuffer. The program in Figure
5.33 will illustrate the use of stat and fstat.

Calls pipe Cannot share pipe

Proc B Proc C

Proc D : Proc E

Shar.e'.pipe

Figure 5.15. Process Tree and Sharing Pipes

5.12 PIPES

Pipes allow transfer of data between processes in a first-in-first-out manner (FIFO),
and they also allow synchronization of process execution. Their implementation
allows processes to communicate even though they do not know what processes are
on the other end of the pipe. The traditional implementation of pipes uses the file
system for data storage. There are two kinds of pipes: named pipes and, for lack
of a better term, unnamed pipes, which are identical except for the way that a
process initially accesses them. Processes use the open system call for named pipes,
but the pipe system call to create an unnamed pipe. Afterwards, processes use the
regular system calls for files, such as read, write, and close when manipulating
pipes. Only related processes, descendants of a process that issued the pipe call,
can share access to unnamed pipes. In Figure 5.15 for example, if process B
creates 2 pipe and then spawns processes D and E, the three processes share access
to the pipe, but processes A and C do not. However, all processes can access a
named pipe regardless of their relationship, subject to the usual file permissions.
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Because unnamed pipes are more common, they will be presented first.

5.12.1 The Pipe System Call
The syntax for creation of a pipe is
pipe(fdptr);

where fdptr is the pointer to an integer array that will contain the two file
descriptors for reading and writing the pipe. Because the kernel implements pipes
in the file system and because a pipe does not exist before its use, the kernel must
assgn an inode for it on creation. It also allocates a pair of user file descriptors
and corresponding file table entries for the pipe: one file déscriptor for reading
from the pipe and the other for writing to the pipe. It uses the file table so that the
interface for the read, write and other system calls is consistent with the interface
for regular files. As a result, processes do not have to know whether they are
reading or writing a regular file or a pipe.

algorithm pipe

input: none

output: read file descriptor
write file descriptor

{

assign new inode from pipe device (algorithm ialloc);

allocate file table entry for reading, another for writing;

initialize file table entries to point to new inode;

allocate user file descriptor for reading, another for writing,
initialize to point to respective file table entries;

set inode reference count to 2;

initialize count of inode readers, writers to 1;

')

Figure 5.16. Algorithm for Creation of (Unnamed) Pipes

Figure 5.16 shows the algorithm for creating unnamed pipes. The kernel
assigns an inode for a pipe from a file system designated the pipe device using
algorithm ialloc. A pipe device is just a file system from which the kernel can
assign inodes and data blocks for pipes. System administrators specify a pipe
device during system configuration, and it may be identical to another file system.
While a pipe is active, the kernel cannot reassign the pipe inode and data blocks to
another file.

The kernel then allocates two file table entries for the read and write
descriptors, respectively, and updates the bookkeeping information in the in-core
inode. Each file table entry records how many instances of the pipe are open for
reading or writing, initially 1 for each file table entry, and the inode reference
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count indicates how many times the pipe was “opened,” initially two — one for
each file table entry. Finally, the inode records byte offsets in the pipe where the
next read or write of the pipe will start. Maintaining the byte offsets in the inode
allows convenient FIFO access to the pipe data and differs from regular files where
the offset is maintained in the file table. Processes cannot adjust them via the Iseek
system call and so random access 1/0 to a pipe is not possible.

5.12.2 Opening a Named Pipe

A named pipe is a file whose semantics are the same as those of an unnamed pipe;
except that it has a directory entry and is accessed by a path name. Processes open
named pipes in the same way that they open regular files and, hence, processes that
are not closely related can communicate. Named pipes permanently exist in the file
system hierarchy (subject to their removal by the unlink system call), but unnamed
pipes are transient: When all processes finish using the pipe, the kernel reclaimsits
inode.

The algorithm for opening a named pipe is identical to the algorithm for
opening a regular file. However, before completing the system call, the kgrnel
increments the read or write counts in the inode, indicating the number of processes
that have the named pipe open for reading or writing. A process that opens the
named pipe for reading will sleep until another process opens the named pipe fof
writing, and vice versa. It makes no sense for a pipe to be open for reading if there
is no hope for it to receive data; the same is true for writing. Depending on
whether the process opens the named pipe for reading or writing, the kernel
awakens other processes that were asleep, waiting for a writer or reader process
(respectively) on the named pipe.

If a process opens a named pipe for reading and a writing proccss exists, the
open call completes. Or if a process opens a named pipe with the no delay option,
the open returns immediately, even if there are no writing processes. But if neither
condition is true, the process sleeps until a writer process opens the pipe. Similar
rules hold for a process that opens a pipe for writing.

5.12.3 Resding and Writing Pipes

A pipe should be viewed as if processes write into one end of the pipe and read
from the other end. As mentioned above, processes access data from a pipe in
FIFO manner, meaning that the order that data is written into a pipe is the order
thatit is read from the pipe. The number of processes reading from a pipe do not
necessarily equal the number of processes writing the pipe; if the number of readers
or writers is greater than 1, they must coordinate use of the pipe with other
mechanisms. The kernel accesses the data for a pipe exactly as it accesses data for
a regular file: It stores data on the pipe device and assigns blocks to the .pipe as
needed during write calls. The difference between storage allocation for a pipe and
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Figure 5.17. Logical View of Reading and Writing a Pipe

a regular file is that a pipe uses only the direct blocks of the inode for greater
efficiency, although this places a limit on how much data a pipe can hold at a time.
The kernel manipulates the direct blocks* of the inode as a circylar queue,
maintaining read and write pointers internally to preserve the FIFO order (Figure
5.17).

Consider four cases for reading and writing pipes: writing a pipe that has room
for the data being written, reading from a pipe that contains enough data to satisfy
the read, reading from a pipe that does not contain enough data to satisfy the
read, and finally, writing a pipe that does not have room for the data being written.

Consider first the case that a process is writing a pipe and assume that the pipe
has room for the data being written: The sum of the number of bytes being written
and the number of bytes already in the pipe is less than or equal to the pipe’s
capacity. The kernel follows the algorithm for writing a regular file, except that it
increments the pipe size automatically after every write, since by definition the
amount of data in the pipe grows with every write. This differs from the growth of
a regular file where the process increments the file size only when it writes data
beyond the current end of file. If the next byte offset in the pipe were to require
use of an indirect block, the kernel adjusts the file offset value in the u area to
point to the beginning of the pipe (byte offset 0). The kernel never overwrites data
in the pipe; it can reset the byte offset to 0 because it has already determined that
the data will not overflow the pipe’s capacity. When the writer process has written
all its data into the pipe, the kernel updates the pipe’s (inode) write pointer so that
the next process to write the pipe will proceed from where the last write stopped.
The kernel then awakens all other processes that fell asleep waiting to read data
from the pipe.

When a process reads a pipe, it checks if the pipe is empty or not. If the pipe
contains data, the kernel reads the data from the pipe as if the pipe were a regular’
file, following the regular algorithm for read. However, its initial offset is the pipe
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read pointer stored in the inode, indicating the extent of the previous read.  After
reading each block, the kernel decrements the size of the pipe according to the
number of bytes it read, and it adjusts the u area offset value to wrap around to the
beginning of the pipe, if necessary. When the read system call completes, the
kernel awakens all sleeping writer processes and saves the current read offset in the
inode (not in the file table entry).

if a process attempts to read more data than is in the pipe, the read will
complete successfully after returning all data currently in the pipe, even though it
does not satisfy the user count. If the pipe is empty, the process will typically sleep
until another process writes data into the pipe, at which time all sleeping processes
that were waiting for data wake up and race to read the pipe. If, however, a
process opens a named pipe with the no delay option, it will return immediately
from a read if the pipe contains no data. The semantics of reading and writing
pipes are similar to the semantics of reading and writing terminal devices (Chapter
10), allowing programs to ignore the type of file they are dealing with.

If a process writes a pipe and the pipe cannot hold all the data, the kernel
marks the inode and goes to sleep waiting for data to drain from the pipe. When
another process subsequently reads from the pipe, the kernel will notice that
processes are asleep waiting for data to drain from the pipe, and it will awaken
them, as explained above. The exception to this statement is when a process writes
an amount of data greater than the pipe capacity (that is, the amount of data that
can be stored in the inode direct blocks); here, the kernel writes as much data as
possible to the pipe and puts the process to sleep until moré room becomes
available. Thus, it is possible that written data will not be contiguous in the pipe if
other processes write their data to the pipe before this process resumes its write.

Analyzing the implementation of pipes, the process interface is consistent with
that of regular files, but the implementation differs because the kernel stores the
read and write offsets in the inode instead of in the file table. The kernel must
store the offsets in the inode for named pipes so that processes can share their
values: They cannot share values stored in file table entries because a process gets
a new file table entry for each open call. However, the sharing of read and write
offsets in the inode predates the implementation of named pipes. Processes with
access to unnamed pipes share access to the pipe through common file table entries,
so they could conceivably store the read and write offsets in the file table entry, as
is done for regular files. This was not done, because the low-level routines in the
kernel no longer have access to the file table entry: The code is simpler because the
processes share offsets stored in the inode.

5.12.4 Closing Pipes

When closing a pipe, -a process follows the same procedure it would follow" for
closing a regular file, except that the kernel does special processing before releasing
the pipe’s inode. The kernel decrements the number of pipe readers or writers,
‘according to the type of the file descriptor. If the count of writer processes drops to
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0 and there are processes asleep waiting to read data from the pipe, the kernel
awakens them, and they return from their read calls without reading any data. If
the count of reader processes drops to 0 and there are processes asleep waiting to
write data to the pipe, the kernel awakens them and sends them a signal (Chapter
7 to indicate an error condition. In both cases, it makes no sense to allow the
processes to continue sleeping when there is no hope that the state of the pipe will
ever change. For example, if a process is waiting to read an unnamed pipe and
there are no more writer processes, there will never be a writer process. Although
it is possible to get new reader or writer processes for named pipes, the kernel
treats them consistently with unnamed pipes. If no reader or writer processes
access the pipe, the kernel frees all its data blocks and adjusts the inode to indicate
that the pipe is empty. When it releases the inode of an ordinary pipe, it frees the
disk copy for reassignment.

char string[] = “hello”;

main(

{
char buf{1024];
char *cpl, *cp2;
int fds[2];

cpl = string;
cp2 = buf;
while (*cpl)
*cp2++ = *cpl++;
pipe(fds);
for G;)
(
write(fds[1], buf, 6);
read (fds([0], buf, 6);

Figure 5.18. Reading and Writing a Pipe

5.12.5 Examples

The program in Figure 5.18 illustrates an artificial use of pipes. The process
creates a pipe and goes into an infinite loop, writing the string “hello” to the pipe
and reading it from the pipe. The kernel does not know nor does it care that the
process that writes the pipe is the same process that reads the pipe.

A process executing the program in Figure 5.19 creates a named pipe node
called “fifo”. If invoked with a second (dummy) argument, it continually writes
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#include <fcntlh>
char string[] = “hello”;
main(argc, argv)

int argc;

char *argv(];

int fd;
char bufl256];

/* create named pipe with read/write permission for all users */
mknod (“fifo”, 010777, 0);
if (argc == 2)
fd = open(*“fifo”, O_WRONLY);
else
fd = open(“fifo”, O_RDONLY);
for (;;)
if (argc == 2)
write(fd, string, 6);
else
read(fd, buf, 6);

Figure 5.19. Reading and Writing a Named Pipe

the string “hello” into the pipe; if invoked without a second argument, it reads the
named pipe. The two processes are invocations of the identical program and have
secretly agreed to communicate through the named pipe “fifo”, but they need not
be related. Other users could execute the program and participate in (or interfere
with) the conversation.

5.13 DUP

The dup system call copies a file descriptor into the first free slot of the user file.
descriptor table, returning the new file descriptor to the user. It works for all file
types. The syntax of the system call is

newfd = dup(fd);

where fd is the file descriptor being duped and newfd is the new file descriptor that
references the file. Because dup duplicates the file descriptor, it increments the
count of the corresponding file table entry, which now has one more file descriptor
entry that points to it. For example, examination of the data structures depicted in
Figure 5.20 indicates that the process did the following sequence of system calls: ' It
opened the file “/etc/passwd” (file descriptor 3), then opened the file “local” (file
descriptor 4), opened the file “/etc/passwd” again (file descriptor 5), and finally,
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Figure 5.20. Data Structures after Dup

duped file descriptor 3, returning file descriptor 6.

Dup is perhaps an inelegant system call, becduse it assumes that the user knows
that the system will return the lowest-numbered free entry in the user file
descriptor table. However, it serves an important purpose in building sophisticated
programs from simpler, building-block programs, as exemplified in the construction
of shell pipelines (Chapter 7).

Consider the program in Figure 5.21. The variable i contains the file descriptor
that the system returns as a result of opefing the file “etc/passwd,” and the
variable j contains the file descriptor that the system returns as a result of duping
the file descriptor i. In the u area of the process, the two user file descriptor
entries represented by the user variables i and j point to one file table entry and
therefore use the same file offset. The first two reads in the process thus read the
data in sequence, and the two buffers, bufl and buf2, do not contain the same data.
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#include <fentl.h>
main()
{
int i, j;
char buf1[512), buf2[512];

i = open(“/etc/passwd”, O_ RDONLY);
j = dup@®; -

read (i, bufl, sizeof (buf1));

read(j, buf2, sizeof(buf2));

close(®;

read(j, buf2, sizeof (buf2));

Figure 5.21. C Program Illustrating Dup

This differs from the case where a process opens the same file twice and reads the
same data twice (Section 5.2). A process can close either file descriptor if it wants,
but I/O continues normall, on the other file descriptor, as illustrated in the
example. In particular, a process can close its standard output file descriptor (file
descriptor 1), dup another file descriptor so that it becomes file descriptor 1, then
treat the file as its standard output. Chapter 7 presents a more realistic example of
the use of pipe and dup when it describes the implementation of the shell.

5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS

A physical disk unit consists of several logical sections, partitioned by the disk
driver, and each section has a device file name. Processes can access data in a
section by opening the appropriate device file name and then reading and writing
the “file,” treating it as a sequence of disk blocks. Chapter 10 gives details on this
interface. A section of a disk may contain a logical file system, consisting of a boot
block, super block, inode list, and data blocks, as described in Chapter 2. The
mount system call connects the file system in a specified section of a disk to the
existing file system hierarchy, and the umount system call disconnects a file system
from the hierarchy. The mount system call thus allows users to access data in a
disk section as a file system instead of a sequence of disk blocks.
The syntax for the mount system call is

mount (special pathname, directory pathname, options);

where special pathname is the name of the device special file of the disk section
containing the file system to be mounted, directory pathname is the directory in the
existing hierarchy where the file system will be mounted (called the mount point),
-and options indicate whether the file system should be mounted “read-only”
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Figure 5.22. File System Tree Before and After Mount

(system calls such as write and creat that write the file system will fail). For
example, if a process issues the system call

mount (*/dev/dsk1”, “/usr”, 0);

the kernel attaches the file system contained in the portion of the disk called
“/dev/dsk1” to directory “/usr” in the existing file system tree (see Figure 5.22).
The file ““/dev/dskl™ is a block special file, meaning that it is the name of a block
device, typically a portion of a disk. The kernel assumes that the indicated portion
of the disk contains a file system with a super block, inode list, and root inode.
After completion of the mount system call, the root of the mounted file system is
accessed by the name “/usr”. Processes can access files on the mounted file system
and ignore the fact that it is detachable. Only the /ink system call checks the file
system of a file, because System V docs not allow file links to span multiple file
systems (see Section 5.15).

The kernel has a mount table with entries for every mounted file system. Each
moant table entry contains

® a device number that identifies the mounted file system (this is the logical file
system number mentioned previously);
e a pointer to a buffer containing the file system super block;
e a pointer to the root inode of the mounted file system (“/” of the *“/dev/dsk1”
file system in Figure 5.22);
2 a pointer to the inode of the directory that is the mount point (“usr” of the root
- file system in Figure 5.22).
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Association of the mount point inode and the root inode of the mounted file system,
set up during the mount system call, allows the kernel .to traverse the file system
hierarchy gracefully, without special user knowledge.

algorithm mount
inputs: file name of block special file
directory name of mount point
options (read only)
output: none
{
if (not super user)
return(error);
get inode for block special file (algorithm namei);
make legality checks;
get inode for “mounted on” directory name (algorithm namei);
if (not directory, or reference count > 1)
{
release inodes (algorithm iput);
return(error);
}
find empty slot in mount table;
invoke block device driver open routine;
get free buffer from buffer cache;
read super block into free buffer;
initialize super block fields;
get root inode of mounted device (algorithm iget), save in mount table;
mark inode of “mounted on” directory as mount point;
release special file inode (algorithm iput);
unlock inode of mount point directory;

Figure 5.23. Algorithm for Mounting a File System

Figure 5.23 depicts the algorithm for mounting a file system. The kernel only
allows processes owned by a superuser to mount or umount file systems. Yielding
permission for mount and wmount to the entire user community would allow
malicious (or not so malicious) users to wreak havoc on the file system. Super-
users should wreak havoc only by accident.

The kernel finds the inode of the spécial file that represents the file system to be
mounted, extracts the major and minor numbers that identify the appropriate disk
section, and finds the inode of the directory on ‘which the file system will be
mounted. The reference count of the directory inode must not be greater than 1 (it
must be at least 1 — why?), because of potentially dangerous side effects (see
exercise 5.27). The kernel then allocates a free slot in the mount table, marks the
slot in use, and assigns the device number field in the mount table. The above
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assignments are done immediately because the calling process could go to sleep in
the ensuing device open procedure or in reading the file system super block; and
another process could attempt to mount a file system. By having marked the
mount table entry in use, the kernel prevents two mounts from using the same
entry. By noting the device number of the attempted mount, the kernel can
prevent other processes from mounting the same file system again, because strange
things could happen if a double mount were allowed (see exercise 5.26).

The ‘kernel calls the open procedure for the block device containing the file
system in the same way it invckes the procedure when opening the block device
directly (Chapter 10). The device open procedure typically checks that the device
is legal, sometimes initializing driver data structures and sending initialization
commands to the hardware. The kernel then allocates a free buffer from the buffer
pool (a variation of algorithm getblk) to hold the super block of the mounted file
system and reads the super block using a variation of algorithm read. The kernel
stores a pointer to the inode of the mounted-on directory of the original file tree to
allow file path names containing *“..” to traverse the mount point, as will be seen.
It finds the root inode of the mounted file system and stores a pointer to the inode
in the mount table. To the user, the mounted-on directory and the root of the
mounted file system are logically equivalent, and the kernel establishes their
equivalence by their coexistence in the mount table entry. Processes can no longer
access the inode of the mounted-on directory.

The kernel initializes fields in the file system super block, clearing the lock fields
for the free block list and free inode list and setting the number of free inodes in
the super block to 0. The purpose of the initializations is to minimize the danger of
file system corruption when mounting the file system after a system crash: Making
the kernel think that there are no free inodes in the super block forces algorithm
ialloc to search the disk for free inodes. Unfortunately, if the linked list of free
disk blocks is corrupt, the kernel does not fix the list internally (see Section 5.17 for
file system maintenance). If the user mounts the file system read-only to disallow
all write operations to the file system, the kernel sets a flag in the super block.
Finally, the kernel marks the mounted-on inode as a mount point, so other
processes can later identify it. Figure 5.24 depicts the various data structures at
the conclusion of the mount call.

5.14.1 Crossing Mount Points in File Path Names

Let us reconsider algorithms namei and iget for the cases where a path name
crosses a mount point. The two cases for crossing a mount point are: crossing
from the mounted-on file system to the mounted file system (in the direction from
the global system root towards a leaf node) and crossing from the mounted file
system to the mounted-on file system. The following sequence of shell commands
illustrates the two cases.
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Inode Table Mount Table

Mounted on inode -., Buff
Marked as mount pointfg-. / e

Reference cnt 1

Super block g
Mounted on inode
Root inode

Device inode /
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Root inode of
mounted file system
Reference cnt 1

Figure 5.24. Data Structures after Mount

mount /dev/dskl /usr

cd /usr/src/uts
cd././.

The mount command invokes the mount system call after doing some consistency
checks and mounts the file system in the disk section identified by “/dev/dsk1” onto
the directory “/usr”. The first cd (change directory) command causes the shell to
execute the chdir system call, and the kernel parses the path name, crossing the
mount point at “/usr”. The second c¢d command results in the kernel parsing the
path name and crossing the mount point at the third “..” in the path name.

For the case of crossing the mount point from the mounted-on file system to the
mounted file system, consider the revised algorithm for iget in Figure 5.25, which is
identical to that of Figure 4.3, except that it checks if the inode is a mount point:
If the inode is marked “mounted-on,” the kernel knows that it is a mount point. It
finds the mount table entry whose mounted-on inode is the one just accessed and
notes the device number of the mounted file system. Using the device number and
the inode number for root, which is common to all file systems, it then accesses the
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root inode of the mounted device and returns that inode.
directory ‘example above, the kernel first accesses the inode for “/usr” in the
mounted-on file system, finds that the inode is marked “mounted-on,” finds the root
inode of the mounted file system in the mount table, and accesses the root inode of

SYSTEM CALLS FOR THE FILE SYSTEM

1 . .

algorithm iget
input: file system inode number
output: locked inode

while (not done)

{
if (inode in inode cache)

{
if (inode locked)

{
sleep (event inode becomes unlocked);
continue; /* loop */

}

/* special processing for mount points———*/

if (inode a mount point)

{
find mount table entry for mount point;
get new file system number from mount table;
use root inode number in search;
continue; /* loop again */

1

if (inode on inode free list)

remove from free list;
increment inode reference count;
return (inode);

}

/* inode not in inode cache */

remove new inode from free list;

reset inode number and file system;

remove inode from old hash queue, place on new one;
read inode from disk (algorithm bread);

initialize inode (e.g. reference count to 1);

return inode;

Figure 5.25. Revised Algorithm for Accessing an Inode

the mounted file system.

In the first change



5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS 125

algorithm namei /* convert path name to inode */
input: path name
output: locked inode
{
if (path name starts from root)
working inode = root inode (algorithm iget);
else
working inode = current directory inode (algorithm iget);
while (there is more path name)
{ ;
read next path name component from input;
verify that inode is of directory, permissions;
if (inode is of changed root and component is "..")
continue; /* loop */
component search:
read inode (direcfory) (algorithms bmap, bread, brelse);
if (component matches a directory entry)

(
get inode number for matched component;
if (found inode of root and working inode is root and
and component name is "..")
{
* crossing mount point */
get mount table entry for working inode;
release working inode (algorithm iput);
working inode = mounted on inode;
lock mounted on inode;
increment reference count of working inode;
go to component search (for "..");
}
release working inode (algorithm iput);
working inode = inode for new inode number (algorithm iget);
}
else /* component not in directory */

return (no inode);

}

return (working inode);

Figure 5.26. Revised Algorithm for Parsing a File Name

For the second case of crossing the mount point from the mounted file system to
the mounted-on file system, consider the revised algorithm for namei in Figure 5.26.
It is similar to that of Figure 4.11. However, after finding the inode number for a
path name component in a directory, the kernel checks if the inode number is the
root inode of a file system. If it is, and if the inode of the current working inode is
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also root, and the path name component is dot-dot (“..””), the kernel identifies the
inode as a mount point. It finds the mount table entry whose device number equals
the device number of the last found inode, gets the inode of the mounted-on

(T3 1]

directory, and continues its search for dot-dot (“..””) using the mounted-on inode as
the working inode. At the root of the file system, however, “..” is the root.

In the example above (cd “../../..”"), assume the starting current directory of the
process is “/usr/src/uts”. When parsing the path name in namei, the starting
working inode is the current directory. The kernel changes the working inode to
that of “/usr/src” as a result of parsing the first “..” in the path name. Then, it
parses the second “.” in the path name, finds the root inode of the (previously)
mounted file system, “usr”, and makes it the working inode in namei. Finally, it
parses the third “..” in the path name: It finds that the inode number for “.” is
the root inode number, its working inode is the root inode, and “..” is the current
path name component. The kernel finds the mount table entry for the *“usr” mount
point, releases the current working inode (the root of the “usr” file system), and
allocates the mounted-on inode (the inode for directory “usr” in the root file
system) as the new working inode. It then searches the directory structures in the
mounted-on “/usr” for “.” and finds the inode number for the root of the file
system (“/”). The chdir system call then completes as usual; the calling process is

oblivious to the fact that it crossed a mount point.

5.14.2 Unmounting a File System
The syntax for the umount system call is
umount (special filename);

where special filename indicates the file system to be unmounted. When
unmounting a file system (Figure 5.27), the kernel accesses the inode of the device
to be unmounted, retrieves the device number for the special file, releases the inode
(algorithm iput), and finds the mount table entry whose device number equals that
of the special file. Before the kernel actually unmounts a file system, it makes sure
that no files on that file system are still in use by searching the inode table for all
files whose device number equals that of the file system being unmounted. Active
files have a positive reference count and include files that are the current directory
of some process, files with shared text that are currently being executed (Chapter
7), and open files that have not been closed. If any files from the file system are
active, the umount call fails: if it were to succeed, the active files would be
inaccessible.

The buffer pool may still contain “delayed write” blocks that were not written
to disk, so the kernel flushes them from the buffer pool. The kernel removes shared
text entries that are in the region table but not operational (see Chapter 7 for
detail), writes out all recently modified super blocks to disk, and updates the disk
copy of all inodes that need updating. It would suffice for the kernel to update the
disk blocks, super block, and inodes for the unmounting file system only, but for
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algorithm umount
input: special file name of file system to be unmounted
output: none
{
if (not super user)
return(error);
get inode of special file (algorithm namei);
extract major, minor number of device being unmounted;
get mount table entry, based on major, minor number,
for unmounting file system;
release inode of special file (algorithm iput);
remove shared text entries from region table for files
belonging to file system; /* chap 7xxx */
update super block, inodes, flush buffers;
if (files from file system still in use)
return(error);
get root inode of mounted file system from mount table;
lock inode;
release inode (algorithm iput); /* iget was in mount */
invoke close routine for special device;
invalidate buffers in pool from unmounted file system;
get inode of mount point from mount table;
lock inode;
clear flag marking it as mount point;
release inode (algorithm iput); /* iget in mount */
free buffer used for super block;
free mount table slot;

Figure 5.27. Algorithm for Unmounting a File System

historical reasons it does so for all file systems. The kernel then releases the root
inode of the mounted file system, held since ‘its original access during the mount
system call, and invokes the driver of the device that contains the file system to
close the device. Afterwards, it goes through the buffers in the buffer cache and
invalidates buffers for blocks on the now unmounted file system; there is no need to
cache data in those blocks any longer. When invalidating the buffers, it moves the
buffers to the beginning of the buffer free list, so that valid blocks remain in the
buffer cache longer. It clears the “mounted-on” flag in the mounted-on inode set
during the mount call and releases the inode. After marking the mount table entry
1free for general use, the umount call completes.
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Figure 5.28. Linked Files in File System Tree

5.15 LINK

The link system call links a file to a new name in the file system directory
structure, creating a new directory entry for an existing inode: The syntax for the
link system call is

link (source file name, target file name);

where source file name is the name of an existing file and rarget file name is the
new (additional) name the file will have after completion of the link call. The file
system contains a path name for each link the file has, and processes can access the
file by any of the path names. The kernel does not know which name was the
original file name, so no file name is treated specially. For example, after executing
the system calls

link (““/usr/src/uts/sys”, “/usr/include/sys™);
link (“/usr/include/realfile.h”, ““/usr/src/uts/sys/testfile.h”);

the following three path names refer to the same file: “‘/usr/src/uts/sys/testfile.h”,
“/usr/include/sys/testfile.h”, and ““/usr/include/realfile” (see Figure 5.28).

The kernel allows only a superuser to link directories, simplifying the coding of
programs that traverse the file system tree. If arbitrary users could /ink directories,
programs designed to traverse the file hierarchy would have to worry about getting
into an infinite loop if a user were to link a directory to a node name below. it in
the hierarchy. Superusers are presumably more careful about making such links.
The capability to link directories had to be supported on early versions of the
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system, because the implementation of the mkdir command, which creates a new
directory, relies on the capability to link directories. Inclusion of the mkdir system
call eliminates the need to link directories.

algorithm link
input: existing file name
new file name
output: none
(
get inode for existing file name (algorithm namei);
if (too many links on file or linking directory without super user permission)
(
release inode (algorithm iput);
return(error);
}
increment link count on inode;
update disk copy of inode;
unlock inode;
get parent inode for directory to contain new file name (algorithm namei);
if (new file name already exists or existing file, new file on
different file systems)
{

undo update done above;
return (error);
}
create new directory entry in parent directory of new file name:
include new file name, inode number of existing file name;
release parent directory inode (algorithm iput);
release inode of existing file (algorithm iput);

Figure 5.29. Algorithm for Linking Files

Figure 5.29 shows the algorithm for /ink. The kernel first locates the inode for
the source file using algorithm namei, increments its link count, updates the disk
copy of the inode (for consistency, as will be seen), and unlocks the inode. It then
searches for the target file; if the file is present, the link call fails, and the kernel
decrements the link count incremented earlier. Otherwise, it notes the location of
an empty slot in the parent directory of the target file, writes the target file name
and the source file inode number into that slot, and releases the inode of the target
file parent directory via algorithm iput. Since the target file did not originally
exist, there is no other inode to release. The kernel concludes by releasing the
source file inode: Its link count is 1 greater than it was at the beginning of the call,
and another name in the file system allows access to it. The link count keeps count
of the directory entries that refer to the file and is thus distinct from the inode
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reference count. If no other processes access the file at the conclusion of the link
call, the inode reference count of the file is 0, and the link count of the file is at
least 2.

For example, when executing

link (“source”, ‘“dir/target”);

the kernel locates the inode for file “source”, increments its link count, remembers
its inode number, say 74, and unlocks the inode. It locates the inode of “dir”, the
parent directory of “target”, finds an empty directory slot in “dir”, and writes the
file name “target” and the inode number 74 into the empty directory slot. Finally,
it releases the inode for “source” via algorithm iput. If the link count of “source”
had been 1, it is now 2.

Two deadlock possibilities are worthy of note, both concerning the reason the
process unlocks the source file inode after incrementing its link count. If the kernel
did not unlock the inode, two processes could deadlock by executing the following
system calls simultaneously.

process A: link(“a/b/c/d”, “e/f/g”);
process B: link(“e/f, “a/b/c/d/ee”);

Suppose process A finds the inode for file “a/b/c/d” at the same time that process
B finds the inode for “e/f”. The phrase at the same time means that the system
arrives at a state where each process has allocated its inode. Figure 5.30 illustrates
an execution scenario. When process A now attempts to find the inode for
directory “e/f”, it wouid sleep awaiting the event that the inode for “f” becomes
free. But when process B attempts to find the inode for directory “a/b/c/d”, it
would sleep awaiting the event that the inode for “d” becomes free. Process A
would be holding a locked inode that process B wants, and- process B would be
holding a locked inode that process A wants. The kernel avoids this classic
example of deadlock by releasing the source file’s inode after incrementing its link
count. Since the first resource (inode) is free when accessing the next resource, no
deadlock can occur.

The last example showed how two processes could deadlock each other if the
inode lock were not released. A single process could also deadlock itself. If it
executed

link(“a/b/c”, “a/b/c/d”);

it would allocate the inode for file “c” in the first part of the algorithm; if the
kernel did not release the inode lock, it would deadlock when encountering the
inode “c” in searching for the file “d”. If two processes, or even one process, could
not continue executing because of deadlock, what would be the effect on the
system? Since inodes are finitely allocatable resources, receipt of a signal cannot
awaken the process from its sleep (Chapter 7). Hence, the system could not break
the deadlock without rebooting. If no other processes accessed the files over which
the processes deadlock, no other processes in the system would be affected.
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However, any processes that accessed those files (or attempted to access other ﬁle'§
via the locked directory) would deadlock. Thus, if the file were *“/bin” or
“/usr/bin” (typical depositories for commands) or “/bin/sh” (the shell) the effect
on the system would be disastrous.

5.16 UNLINK

The unlink system call removes a directory entry for a file. The syntax for the
unlink call is

unlink(pathname);

where pathname identifies the name of the file to be unlinked from the directory
hierarchy. If a process unlinks a given file, no file is accessible by that name until
another directory entry with that name is created. In the following code fragment,
for example,

unlink (“myfile”);
fd = open(“myfile”, O_RDONLY);

the open call should fail, because the current directory no longer contains a file
called myfile. If the file being unlinked is the last link of the file, the kernel
eventually frees its data blocks. However, if the file had several links, it is still
accessible by its other names.

Figure 5.31 gives the algorithm for unlinking a file. The kernel first uses a
variation of algorithm namei to find the file that it must unlink, but instead of
returning its inode, it returns the’inode of the parent directory. It accesses the in-
core inode of the file to be unlinked, using algorithm iget. (The special case for
unlinking the file “.” is covered in an exercise.) After checking error conditions
and, for executable files, removing inactive shared text entries from the region table
(Chapter 7), the kernel clears the file name from the parent directory: Writing a 0
for the value of the inode number suffices to clear the slot in the directory. The
kernel then does a synchronous write of the directory to disk to ensure that the file
is inaccessible by its old name, decrements the link count, and releases the in-core
inodes of the parent directory and the unlinked file via algorithm iput.

When releasing the in-core inode of the unlinked file in iput, if the reference
count drops to 0, and if the link count is O, the kernel reclaims the disk blocks
occupied by the file. No file names refer to the inode any longer and the inode is
not active. To reclaim the disk blocks, the kernel loops through the inode table of
contents, freeing all direct blocks immediately (according to algorithm free). For
the indirect blocks, it recursively frees all blocks that appear in the various levels of
indirection, freeing the more direct blocks first. It zeroes out the block numbers in
the inode table of contents and sets the file size in the inode to 0. It then clears the
inode file type field 'to indicate that the inode is free and frees the inode with
algorithm ifree. It updates the disk since the disk copy of the inode still indicated
* that. the inode was in use; the inode is now free for assignment to other files.
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algorithm unlink
input: file name
output: none
{
get parent inode of file to be unlinked (algorithm namei);
/* if unlinking the current directory... */
if (last component of file name is ".")
increment inode reference count;
else
get inode of file to be unlinked (algorithm iget);
if (file is directory but user is not super user)
{
release inodes (algorithm iput);
return(error);
)
if (shared text file and link count currently 1)
remove from region table;
write parent directory: zero inode number of unlinked file;
release inode parent directory (algorithm iput);
decrement file link count;
release file inode (algorithm iput);
/* iput checks if link count is O: if so,
* releases file blocks (algorithm free) and
* frees inode (algorithm ifree);
*/

Figure 5.31. Algorithm for Unlinking a File

5.16.1 File System Consistency

The kernel orders its writes to disk to minimize file system corruption in event of
system failure. For instance, when it removes a file name from its parent directory,
it writes the directory synchronously to the disk — before it destroys the contents of
the file and frees the inode. If the system were to crash before the file contents
were removed, damage to the file system would be minimal: There would be an
inode that would have a link count 1 greater than the number of directory entries
that access it, but all other paths to the file would still be legal. If the directory
write were not synchronous, it would be possible for the directory entry on disk to
point to a free (or reallocated!) inode after a system crash. Thus there would be
more directory entries in the file system that refer -to the inode than the inode
would have link counts. In particular, if the file name was that of the last link to
the file, it would refer to an unallocated inode. System damage is clearly less
'severe 'and easier to correct in the first case (see Section 5.18).
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For example, suppose a file has two links with path names “a” and “b”, and
suppose a process unlinks “a”. If the kernel orders the disk write operations, then
it zeros the directory entry for “a” and writes it to disk. If the system crashes after
the write to disk completes, file “b” has link count of 2, but file “a” does not exist
because its old entry had been zeroed before the system crash. File “b” has an
extra link count, but the system functions properly when rebooted.

Now suppose the kernel ordered the disk write operations in the reverse order
and the system crashes: That is, it decrements the link count for the file “b” to 1,
writes the inode to disk, and crashes before it could zero the directory entry for file
“a”. When the system is rebooted, entries for files “a” and *“b” exist in their
respective directories, but the link count for the file they reference is 1. If a process
then unlinks file “a”, the file link count drops to O even though file “b” still
references the inode. If the kernel were later to reassign the inode as the result of
a creat system call, the new file would have link count 1 but two path names that
reference it. The system cannot rectify the situation except via maintenance
programs (fsck, described in Section 5.18) that access the file systemr through the
block or raw interface.

The kernel also frees inodes and disk blocks in a specific order to minimize
corruption in event of system failure. When removing the contents of a file and
clearing its inode, it is possible to free the blocks containing the file data first, or it
is possible to free and write out the inode first. The result is usually identical for
both cases, but it differs if the system crashes in the middle. Suppose the kernel
first frees the disk blocks of a file and crashes. When the system is rebooted, the
inode still contains references to the old disk blocks, which may no longer contain
data relevant to the file. The kernel would see an apparently good file, but a user
accessing the file would notice corruption. It is also possible that other files were
- assigned those disk blocks. The effort to clean the file system with the fsck
program would be great. However, if the system first writes the inode to disk and
the system crashes, a user would not notice anything wrong with the file system
when the system is rebooted. The data blocks that previously belonged to the file
would be inaccessible to the system, but users would notice no apparent corruption.
The fsck program also finds the task of reclaiming unlinked disk blocks easier than
the clean-up it would have to do for the first sequence of events.

5.16.2 Race Conditions

Race conditions abound in the wunlink system call, particularly when unlinking
directories. The rmdir command removes a directory after verifying that the
directory contains no files (it reads the directory and checks that all directory
entries have inode value 0). But since rmdir runs at user level, the actions of
verifying that a directory is empty and removing the directory are not atomic; the
system could do a context switch between execution of the read and unlink system
calls. Hence, another process could creat a file in the directory after rmdir
determined that the directory was empty. Users can prevent this 'situation only by
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use of file and record locking. Once a process begins execution -of the unlink call,
however, no other process can access the file being unlinked since the inodes of the
parent directory and the file are locked.

Recall the algorithm for the link system call and how the kernel unlocks the
inode before completion of the call. If another process should unlink the file while
the inode lock is free, it would only decrement the link count; since the link count
had been incremented before unlinking the inode, the count would still be greater
than 0. Hence, the file cannot be removed, and the system is safe. The condition is
equivalent to the case where the unlink happens immediately after the link call
completes.

Another race condition exists in the case where one process is converting a file
path name to an inode using algorithm namei and another process is removing a
directory in that path. Suppose process A is parsing the path name “a/b/c/d” and
goes to sleep while allocating the in-core inode for “c”. It could go to sleep while
trying to lock the inode or while trying to access the disk block in which the inode
resides (see algorithms iget and bread). If process B wants to unlink the directory
“c”, it may go to sleep, possibly for the same reasons that process A is sleeping.
Suppose the kernel later schedules process B to run before process A. Process B
would run to completion, unlinking directory “c” and removing it and its contents
(for the last link) before process A runs again. Later, process A would try to
access an illegal in-core inode that had been removed. Algorithm namei therefore
checks that the link count is not 0 before proceeding, reporting an error otherwise.

The check is not sufficient, however, because another process could conceivably
create a new directory somewhere in the file system and allocate the inode that had
previously been used for “c”. Process A is tricked into thinking that it accessed the
correct inode (see Figure 5.32). Nevertheless, the system maintains its integrity;
the worst that could happen is that the wrong file is accessed — a possible security
breach — but the race condition is rare in practice.

A process can unlink a file while another process has the file open. (The
unlinking process could even be the process that did the open). Since the kernel
unlocks the inode at the end of the open call, the unlink call will succeed. The
kernel will follow the unlink algorithm as if the file were not open, and it will
remove the directory entry for the file. No other processes will be able to access
the now unlinked file. However, since the open system call had incremented the
inode reference count, the kernel does not clear the file contents when executing the
iput algorithm at the conclusion of the unlink call. So the opening process can do
all the normal file operations with its file descriptor, including reading and writing
the file. But when it closes the file, the inode reference count drops to O in iput,
and the kernel clears the contents of the file. In short, the process that had opened
the file proceeds as if the unlink did not occur, and the unlink happens as if the file
were not open. Other system calls will continue to work for the opening process,
too.

“In Figure 5.33 for example, a process opens a file supplied as a parameter and
then unlinks the file it just opened. The stat call fails because the original path
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Proc A Proc B Proc C

Unlink file ¢
Find inode for ¢ locked
Sleeps

Search dir b for name ¢

Get inode number for ¢

Finds inode for ¢ locked
Sleeps

Wakes up and c free
Unlinks c,
old inode free if
link count 0

Assign inode to new file n
Happen to assign
old inode for ¢

Eventually release
inode n lock

Wakes up and old ¢ inode free
(now n)
Get inode for n
Search n for name d

Time

Figure 5.32. Unlink Race Condition
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#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>

main(argc, argv)
int argc;
char *argv(]; -

int fd;
char bufl1024];
struct stat statbuf;

if (argc !=2) /* need a parameter */
exit(; '
fd = open(argv(1], O_ RDONLY);
if (fd == —1) /* open fails */
exit();
if (unlink(argv[1]) == —1) /* unlink file just opened */
exit(Q;

if (stat(argv[1], &statbuf) == —1) /* stat the file by name*/
printf(“stat %s fails as it should\n”, argv[1])-

else
“printf(“stat %s succeeded!"!\n”, argv[1]);

if (fstat(fd, &statbuf) == —1) /* stat the file by fd */
printf(“fstat %s fails!"\n”, argv[1]);

else
printf(“fstat %s succeeds as it should\n”, argv[1]);

while (read(fd, buf, sizeof (buf)) > 0)  /* read open/unlinked file */
printf(“%1024s”, buf); /* prints 1K byte field */

Figure 5.33. Unlinking an Opened File

name no longer refers to a file after the unlink (assuming no other process created
a file by that name in the meantime), but the fstar call succeeds because it gets to
the inode via the file descriptor. The process loops, reading the file 1024 bytes at a
time and printing the file to the standard output. When the read encounters the
end of the file, the process exits: After the close in exit, the file no longer exists.
Processes commonly create temporary files and immediately unlink them; they can
continue to read and write them, but the file name no longer appears in the
directory hierarchy. If the process should fail for some reason, it leaves no trail of
temporary files behind it.
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5.17 FILE SYSTEM ABSTRACTIONS

Weinberger introduced file system types to support his network file system (see
[Killian 84] for a brief description of this mechanism), and the latest release of
System V supports a derivation of his scheme. File system types allow the kernel to-
support multiple file systems simultaneously, such as network file systems (Chapter
13) or even file systems of other operating systems. Processes use the usual UNIX
system calls to access files, and the kernel maps a generic set of file operations into
operations specific to each file system type.

File System Generic System V
Operations Inodes File System Inode
System V open N
close #
read
write VN
: P -1
Remote ropen
rclose
rread Remote

rwrite Inode

Figure 5.34. Inodes for File System Types

The inode is the interface between the abstract file system and the specific file
system. A generic in-core inode contains data that is independent of particular file
systems, and points to a file-system-specific inode that contains file-system-specific
data. The file-system-specific inode contains information such as access permissions
and block layout, but the generic inode contains the device number, inode number,
file type, size, owner, and reference count. Other data that is file-system-specific
includes the super block and directory structures. Figure 5.34 depicts the generic
in-core inode table and two tables of file-system-specific inodes, one for System V
file system structures and the other for a remote (network) inode. The latter inode
presumably. contains enough information to.identify a file on a remote system. A
file system may not have an inode-like structure; but the_ file-system-specific code
manz factures an object that satisfies UNIX file system semantics and allocates its
“inode” when the kernel allocates a generic inode.
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Each file system type has a structure that contains the addresses of functions
“that perform abstract operations. When the kernel wants to access a file, it makes
an indirect function call, based on the file system type and the operation (see
Figure 5.34). Some abstract operations are to open a file, close it, read or write
data, return an inode for a file name component (like namei and iget), release an
inode (like iput), update an inode, check access permissions, set file attributes
(permissions), and mount and unmount file systems. Chapter 13 will illustrate the
use of file system abstractions in the description of a distributed file system.

5.18 FILE SYSTEM MAINTENANCE

The kernel maintains consistency of the file system during normal operation.
However, extraordinary circumstances such-as a power fajlure may cause a system
crash that leaves a file system in an inconsistent state: most of the data in the file
system is acceptable for use, but some inconsistencies exist. The command fsck
checks for such inconsistencies and repairs the file system if necessary. It accesses
the file system by its block or raw interface (Chapter 10) and bypasses the regular
file access methods. This section describes several inconsistencies checked by fsck.

A disk block may belong to more than one inode or to the list of free blocks and
an inode. When a file system is originally set up, all disk blocks are on the free list.
When a disk block is assigned for use, the kernel removes it from the free list and
assigns it to an inode. The kernel may not reassign the disk block to another inode
until the disk block has been returned to the free list. Therefore, a disk block is
either on the free list or assigned to a single inode. Consider the possibilities if the
kernel freed a disk block in a file, returning the block number to the in-core copy of
the super block, and allocated the disk block to a new file. If the kernel wrote the
inode and blocks of the new file to disk but crashed before updating the inode of
the old file to disk, the two inodes would address the same disk block number.
Similarly, if the kernel wrote the super block and its free list to disk and crashed
before writing the old inode out, the disk block would appear on the free list and in
the old inode.

If a block number is not on the free list of blocks nor contained in a file, the file
system is inconsistent because, as mentioned above, all blocks must appear
somewhere. This situation could happen if a block was removed from a file and
placed on the super block free list. If the old file was written to disk and the
system crashed before the super block was written to disk, the block would not
appear on any lists stored on disk.

An inode may have a non-0 link count, but its inode number may not exist in
any directories in the file system. All files except (unnamed) pipes must exist in
the file system tree. If the system crashes after creating a pipe or after creating a
file but before creating its directory entry, the inode will have its link field set even
though it does not appear to be in the file system. The problem could also arise if a
directory were unlinked before making sure that all files contained in the directory
were unlinked.
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If the format of an inode is incorrect (for instance, if the file type field has an
undefined value), something is wrong. This could happen if an administrator
mounted an impropérly formatted file system. The kernel accesses disk blocks that
it thinks contain inodes but in reality contain data.

If an inode number appears in a directory entry but the inode is free, the file
system is inconsistent because an inode number that appears in a directory entry
" should be that of an allocated inode. This could happen if the kernel was creating
a new file and wrote the directory entry to disk but did not write the inode to disk
before the crash. It could also occur if a process unlinked a file and wrote the
freed inode to disk, but did not write the directory element to disk before it
crashed. These situations are avoided by ordering the write operations properly.

If the number of free blocks or free inodes recorded in the super block does not
conform to the number that exist on disk, the file system is inconsistent. The
summary information in the super block must always be consistent with the state of
the file system.

5.19 SUMMARY

This chapter concludes the first part of the book, the explanation of the file system.
It introduced three kernel tables: the user file descriptor table, the system file
table, and the mount table. It described the algorithms for many system calls
relating to the file system and their interaction. It introduced file system
abstractions, which allow the UNIX system to support varied file system types.
Finally, it described how fsck checks the consistency of the file system.

5.20 EXERCISES

1. Consider the program in Figure 5.35. What is the return value for all the reads and
what is the contents of the buffer? Describe what is happening in the kernel during
each read.

2. Reconsider the program in Figure 5.35 but suppose the statement

Iseek (fd, 9000L, 0);

is placed before the first read. What does the process see and what happens inside the
kernel?

3. A process can open a file in write-append mode, meaning that every write operations
starts at the byte offset marking the current end of file. Therefore, two processes can
open a file in write-append mode and write the file without overwriting data. What
happens if a process opens a file in write-append mode and seeks to the beginning of
the file? '

4. The standard I/0 library makes user reading and writing more efficient by buffering
the data in the library and thus potentially saving the number of system calls a user
has to make. How would you implement the library functions fread and fwrite?
What should the library functions fopen and fclose do?
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##include <fentl.h>
main(

{ .
int fd;

char buf{1024];

fd = creat(“junk”, 0666);

Iseek(fd, 2000L, 2); /* seek to byte 2000 */
write(fd, “hello”, 5);

- close(fd);
fd = open(*junk”, O_RDONLY);
read(fd, buf, 1024); /* read zero's */
read(fd, buf, 1024); /* catch something */

read(fd, buf, 1024);

Figure 5.35. Reading Os and End of File

5. If a process is reading data consecutively from a file, the kernel notes the value of the
read-ahead block in the in-core inode. What happens if several processes
simultaneously read data consecutively from the same file?

#include <fcntl.h>
main()
{
int fd;
char bufl256];

fd = open(*“/etc/passwd”, O_RDONLY);
if (read(fd, buf, 1024) < 0)
printf(“read fails\n™);

Figure 5.36. A Big Read in a Little Buffer

6. Consider the program in Figure 5.36. What happens when the program is executed?
Why? What would happen if the declaration of buf were sandwiched between the
declaration of two other arrays of size 1024? How does the kernel recognize that the
read is too big for the buffer?

* 7. The BSD file system allows fragmentation of the last block of a file as needed,
according to the following rules:

e Structures similar to the super block keep track of free fragments;
e The kernel does not keep a preallocated pool of free fragments but breaks a free
block into fragments when necessary;
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o The kernel can assign block fragments only for the last block of a file;
o If a block is partitioned into several fragments, the kernel can assign them to
different files;

e The number of fragments in a block is fixed per file system;

o The kernel allocates fragments during the write system call.

Design an algorithm that allocates block fragments to a file. What changes must be
made to the inode to allow for fragments? How advantageous is it from a
performance standpoint to use fragments for files that use indirect blocks? Would it
be more advantageous to allocate fragments during a close call instead of during a
write call?

Recall the discussion in Chapter 4 for placing data in a file’s inode. If the size of. the
inode is that of a disk block, design an algorithm such that the last data of a file is
written in the inode block if it fits. Compare this method with that described in the
previous problem.
System V uses the fcntl system call to implement file and record locking:

fentl(fd, cmd, arg);

where fd is the file descriptor, cmd specifies the type of locking operation, and arg
specifies various parameters, such as lock type (read or write) and byte offsets (see the
appendix). The locking operations include

o Test for locks belonging to other processes and return immediately, indicating

whether other locks were found,

o Set a lock and sleep until successful,

e Set a lock but return immediately if unsuccessful.
The kernel automatically releases locks set by a process when it closes the file.
Describe an algorithm that implements file and record locking. If the locks are
mandatory, other processes should be prevented from accessing the file. What
changes must be made to read and write?

If a process goes to sleep while waiting for a file lock to become free, the possibility for
deadlock exists: process A may lock file “one” and attempt to lock file “two,” and
process B may lock file “two” and attempt to lock file “one.” Both processes are in a
state where they cannot continue. Extend the algorithm of the previous problem so
that the kernel detects the deadlock situation as it is about to occur and fails the
system call. Is the kernel the right place to check for deadlocks?

Before the existence of a file locking system call, users could get cooperating processes
to implement a locking mechanism by executing system calls that exhibited atomic
features. What system calls described in this chapter could be used? What are the
dangers inherent in using such methods?
Ritchie claims (see [Ritchie 81]) that file locking is not sufficient to prevent the
confusion caused by programs such as editors that make a copy of a file while editing
and then write the original file when done. Explain what he meant and comment.
Consider another method for locking files to prevent destructive update: Suppose the
inode contains a new permission setting such that it allows only one process at a time
to open the file for writing, but many processes can open the file for reading. Describe
an implementation.

Consider the program in Figure 5.37 that creates a directory node in the wrong format
(there are no directory entries for “.” and “.”). Try a few commands on the new
directory such as Is =/, Is —Id, or cd. What is happening?
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main(argc, argv)
int arggc;
char *argvl];

if (arge!=2)
(

printf(“try: command directory name\n”);
exit();

}

/* modes indicate: directory (04) rwx permission for all */
/* only super user can do this */
if (mknod(argvl1], 040777, 0} == —1)

printf(*mknod. fails\n”);

Figure 5.37. A Half-Baked Directory

Write a program that prints the owner, file type, access permissions, and access times
of files supplied as parameters. If a file (parameter) is a directory, the program should
read the directory and print the above information for all files in the directory.
Suppose .a directory has read permission for a user but not execute permission. What
happens when the directory is used as a parameter to /s with the “—i” option? What
about the “—1” option? Explain the answers. Repeat the problem for the case that
the directory has execute permission but not read permission.
Compare the permissions a process must have for the following operations and
comment.

e Creating a new file requires write permission in a directory.

e Creating an existing file requires write permission on the file.

e Unlinking a file requires write permission in the directory, not on the file.
Write a program that visits every directory, starting with the ‘current directory. How
should it handle loops in the directory hierarchy?
Execute the program in Figure 5.38 and describe what happens in the kernel. (Hint:
Execute pwd when the program completes.)
Write a program that changes its root to a particular directory, and investigate the
directory tree accessible to that program.
Why can’t a process undo a previous chroot system call? Change the implementation
so that it can change its root back to a previous root. What are the advantages and
disadvantages of such a feature?
Consider the simple pipe example in Figure 5.19, where a process writes the string
“hello” in the pipe then reads the string. What would happen if the count of data
written to the pipe were 1024 instead of 6 (but the count of read data stays at 6)?
What would happen if the order of the read and write system calls were reversed?

In the program illustrating the use of named pipes (Figure 5.19), what happens if
mknod discovers that the named pipe already exists? How does the kernel implement
this? What would happen if many reader and writer processes all attempted to
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main (argc, argv)
int argc;
char *argv(];

if (arge = 2)

{
printf(“need 1 dir arg\n”);
exit();

}

if (chdir(argv(1]) == —1)
printf(“%s not a directory\n”, argv([1]);

Figure 5.38. Sample Program with Chdir System Call

communicate through the named pipe instead of the one reader and one writer implicit
in the text? How could the processes ensure that only one reader and one writer
process were communicating?

When opening a named pipe for reading, a process sleeps in the open until another
process opens the pipe for writing. Why? Couldn’t the process return successfully
from the open, continue processing until it tried to read from the pipe, and sleep in the
read?

How would you implement the dup2 (from Version 7) system call with syntax

dup2(oldfd, newfd);

where oldfd is the file descriptor to be duped to file descriptor number newfd? What
should happen if newfd already refers to an open file?

What strange things could happen if the kernel would allow two processes to mount
the same file system simultaneously at two mount points?

Suppose a process changes its current directory to “/mnt/a/b/c” and a second process
then mounts a file system onto *“/mnt”. Should the mount succeed? What happens if
the first process executes pwd? The kernel does not allow the mount to succeed if the
inode reference count of “/mnt” is greater than 1. Comment.

In the algorithm for crossing a mount point on recognition of “..” in the file path
name, the kernel checks three conditions to see if it is at a mount point: that the
found inode has the root inode number, that the working inode is roct of the file
system, and that the path name component is “.”. Why must it check all three
conditions? Show that checking any two conditions is insufficient to allow the process
to cross the mount peint.

If a user mounts a file system "read-only,” the kernel sets a flag in the super block.
How should it prevent write operations during the write, creat, link, unlink, chown,
and chmod system calls? What write operations do all the above system calls do to
the file system?

Suppose a process attempts to umount a file system and another process is
simultaneously attempting to creat a new file on that file system. Only one system call
can succeed. Explore the race condition.
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When the umount system call checks that no more files are active on a file system, it
has a problem with the file system root inode, allocated via iget during the mount
system call and hence having reference count greater than 0. How can umount be
sure there are no active files and take account for the file system. root? Consider two
cases:
e umount releases the root inode with the iput algorithm before checking for active
inodes. (How does it recover if there were active files after all?)
o umount checks for active files before releasing the root inode but permits the root
inode to remain active. (How active can the root inode get?)
When executing the command /s —/d on a directory, note that the number of links to
the directory is never 1. Why?
How does the command mkdir (make a new directory) work? (Hint: When mkdir
completes, what are the inode numbers for “.” and “..”’?)
Symbolic links refer to the capability to l/ink files that exist on different file systems.
A new type indicator specifies a symbolic link file; the data of the file is the path name
of the file to which it is linked. Describe an implementation of symbolic links.
What happens when a process executes

unlink (*.”);

What is the current directory of the process? Assume superuser permissions.

Design a system call that truncates an existing file to arbitrary sizes, supplied as an
argument, and describe an implementation. Implement a system cali that allows a
user to remove a file segment between specified byte offsets, compressing the file size.
Without such systeni calls, encode a program that provides this functionality

Describe all conditions where the reference count of an inode can be greater than 1.

In file system abstractions, should each file system type support a private lock
operation to be called from the generic code, or does a generic lock operation suffice?
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Chapter 2 formulated the high-level characteristics of processes. This chapter
presents the ideas more formally, defining the context of a process and showing how
the kernel identifies and locates a process. Section 6.1 defines the process state
modei for the UNIX system and the set of state transitions. The kernel contains a
process table with an entry that describes the state of every active process in the
system. The u area contains additional information that controls the operation of a
process. The process table entry and the u area are part of the context of a
process. The aspect of the process context that most visibly distinguishes it from
the context of another process is, of course, the contents of its address space.
Section 6.2 describes the principles of memory management for processes and for
the kernel and how the operating system and the hardware cooperate to do virtual
memory address translation. Section 6.3 examines the components of the context of
a process, and the rest of the chapter describes the low-level algorithms that
manipulate the process context. Section 6.4 shows how the kernel saves the context
of a process during an interrupt, system call, or context switch and how it later
resumes execution of the suspended process. Section 6.5 gives various algorithms,
used by the system calls described in the next chapter, that manipulate the process
address space. Finally, Section 6.6 covers the algorithms for putting a process to
sleep and for waking it up.

146
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6.1 PROCESS STATES AND TRANSITIONS

As outlined in Chapter 2, the lifetime of a process can be conceptually divided into
a set of states that describe the process. The following list contains the complete
set of process states.

1. The process is executing in user mode.

2. The process is executing in kernel mode.

3. The process is not executing but is ready to run as soon as the kernel
schedules it.

4. The process is sleeping and resides in main memory.

The process is ready 1o run, but the swapper (process 0) must swap the

process into mamn memory before the kernel can schedule it to execute.

Chapter 9 will reconsider this state in a paging system.

6. The process is sleeping, and the swapper has swapped the process to
secondary storage to make room for other processes in main memory.

7. The process is returning from the kernel to user mode, but the kernel
preempts it and does a context switch to schedule another process. The
distinction between this state and state 3 (“ready to run”) will be brought out
shortly.

8. The process is newly created and is in a transition state; the process exists,
but it is not ready to run, nor is it sleeping. This state is the start state for
all processes except process 0.

9. The process executed the exit system call and is in the zombie state. The
process no longer exists, but it leaves a record containing an exit code and
some timing statistics for its parent process to collect. The zombie state is
the final state of a process.

w

Figure 6.1 gives the complete process state transition diagram.. Consider a
typical process as it moves through the state transition model. The events depicted
are artificial in that processes do not always experience them, but they illustrate
various state transitions. The process enters the state model in the “created” staie
when the parent process executes the fork system call and eventually moves into a
state where it is ready to run (3 or 5). For simplicity, assume the process enters
the state “ready to run in memory.” The process scheduler will eventually pick the
process to execute, and the process enters the state “kernel running,” where it
completes its part of the fork system call.

When the process completes the system call, it may move to the state ‘“‘user
running,” where it executes in user mode. After a period of time, the system clock
may interrupt the processor, and the process enters state ‘kernel running” again.
When the clock interrupt handler finishes servicing the clock interrupt, the kernel
may decide to schedule another process to execute, so the first process enters state
“preempted” and the other process executes. The state “preempted” is really the
same as the state “ready to run in memory” (the dotted line in the figure that
connects the two states emphasizes their equivalence), but they are depicted
separately to stress that a process executing in kernel mode can be preempted only
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Figure 6.1. Process State Transition Diagram
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when it is about to return to user mode. Consequently, the kernel could swap a
process from the state.preempted” if necessary. Eventually, the scheduler will
choose the process to execute, and' it returns to the state “user running,” executing
in user mode again.

When a process executes a system call, it leaves the state “user running” and
enters the state “kernel running.” Suppose the system call requires I/O from the
disk, and the process must wait for the I/O to complete. It enters the state “asleep
in memory,” putting itself to sleep until it is notified that the I/O has completed.
When the I/O later completes, the hardware interrupts the CPU, and the interrupt
handler awakens the process, causing it to enter the state “ready to run in
memory.”

Suppose the system is executing many processes that do not fit simultaneously
into main memory, and the swapper (process 0) swaps out the process to make
room for another process that is in the state “ready to run swapped.” When
evicted from main memory, the process enters the state “ready to run swapped.”
Eventually, the swapper chooses the process as the most suitable to swap into main
memory, and the process reenters the state “ready to run in memory.” The
scheduler will eventually choose to run the process, and it enters the state “kernel
running” and proceeds. When a process completes, it invokes the exit system cali,
thus-entering the states “kernel running” and, finally, the “zombie” state.

The process has control over some state transitions at user-level. First, a
process can create another process. However, the state transitions the process takes
from the “created” state (that is, to the states “ready to run in memory” or “ready
to run swapped”) depend. on the kernel: The process has no control over those state
transitions. Second, a process can make system calls to move from state “user
running” to state “kernel runhing” and enter the kernel of its own volition.
However, the process has no control over when it will return from the kernel; events
may dictate that it never returns but enters the zombie state (see Section 7.2 on
signals). Finally, a process can exit of its own volition, but as indicated before,
external events may dictate that it exits without explicitly invoking the exit system
call. All other state trafsitions follow a rigid model encoded in the kernel, reacting
to events in a predictable way according to rules formulated in this and later
chapters. Some rules have already been cited: No process can preempt another
process executing in the kernel, for example.

Two kernel data structures describe the state of a process:. the process table
entry and the u area. The process table contains fields that must always be
accessible to the. kernel, but the u area contains fields that need to be accessible
only to the running process. Therefore, the kernel allocates space for the u area
only when creating a process: It does not need u areas for process table entries
that do not have processes.

The fields in the process table are the following.

e The state field identifies the process state. ,
o The process table entry contains fields that allow the kernel to locate the process
and its ¥ area in main memory or in secondary storage. The kernel uses the
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information to do a context switch to the process when the process moves from
state “ready to run in memory” to the state “kernel running” or from the state
“preempted” to the state “‘user running.” In addition, it uses this information
when swapping (or paging) processes to and from main memory (between the
two “in memory” states and the two “swapped” states). The process table
entry also contains a field that gives the process size, so that the kernel knows

how much space to allocate for the process.

Several user identifiers (user IDs or UIDs) determine various process privileges.
For example, the user ID fields delineate the sets of processes that can send
signals to each other, as will be explained in the next chapter.

Process identifiers (process IDs or PIDs) specify the relationship of processes to
each other. These ID fields are set up when the process enters the state
“created” in the fork system call. '

The process table entry contains an event descriptor when the process is in the
“sleep” state. This chapter will examine its use in the algorithms for sleep and
wakeup.

Scheduling parameters allow the kernel to determine the order in which
processes move to the states “kernel running” and “user running.”

A signal field enumerates the signals sent to a process but not yet handled
(Section 7.2).

Various timers give process execution time and kernel resource utilization, used
for process accounting and for the calculation of process scheduling priority.
One field is a user-set timer used to send an alarm signal to a process (Section
8.3).

The u area qontains the following fields that further characterize the process

states. Previous chapters have described the last seven fields, which are briefly

des

cribed again for completeness.

A pointer to the process table identifies the entry that corresponds to the u area.
The real and effective user IDs determine various privileges allowed the process,
such as file access rights (see Section 7.6).

Timer fields record the time the process (and its descendants) spent executing in
user mode and in kernel mode.

e An array indicates how the process wishes to react to signals.
e The control terminal field identifies the “login terminal” associated with the

process, if one exists.

e An error field records errors encountered during a system call.
e A return value field contains the result of system calls.
e I/O parameters describe the amount of data to transfer, the address of the

source (or target) data array in user space, file offsets for I/0, and so on.

The current directory and current root .describe the file system environment of
the process.

The user file descriptor table records the files the process has open.
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e Limit fields restrict the size of a process and the size of a file it can write.
e A permission modes field masks mode settings on files the process creats.

This section has described the process state transitions on a logical level. Each
state has physical characteristics managed by the kernel, particularly the virtual
address space of the process. The next section describes a model for memory
management; later sections describe the states and state transitions at a physical
level, focusing on the states ‘“user running,” “kernel running,” “preempted,” and
“sleep (in memory).” The next chapter describes the states ‘“created” and
“zombie,” and Chapter 8 describes the state “ready to run in memory.” Chapter 9
discusses the two “swap” states and demand paging.

6.2 LAYOUT OF SYSTEM MEMORY

Assume that the physical memory of a machine is addressable, starting at byte
offset 0 and going up to a byte offset equal to the amount of memory on the
machine. As outlined in Chapter 2, a process on the UNIX system consists of
three logical sections: text, data, and stack. (Shared memory, discussed in
Chapter 11, should be considered part of the data section for purposes of this
discussion.) . The text section contains the set of instructions the machine executes
for the process; addresses in the text section include text addresses (fpr branch
instructions or subroutine calls), data addresses (for access to global data
variables), or stack addresses (for access to data structures local to a subroutine).
If the machine were to treat the generated addresses as address locations in
physical memory, it would be impossible for two processes to execute concurrently
if their set of generated addresses overlapped. The compiler could generate:
addresses that did not overlap between programs, but such a procedure. is
impractical for general-purpose computers because the amount of memory on a
machine is finite and the set of all programs that could be compiled is infinite.
Even if the compiler used heuristics to try to avoid unnecessary overlap of
generated addresses, the implementation would be inflexible and therefore
undesirable.

The compiler therefore generates addresses for a virtual address space with a
given address range, and the machine’s memory management unit translates the
virtual addresses generated by the compiler into address locations in physical
memory. The compiler does not have to know where in memory the kernel will
later load the program for execution. In fact, several copies of a program can
coexist in memory: All execute using the same virtual addresses but reference
different physical addresses. The subsystems of the kernel and the hardware that
cooperate to translate virtual to physical addresses comprise the memory
management subsystem.
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6.2.1 Regions

The System V kernel divides the virtual address space of a process into logical
regions. A region is a contiguous area of the virtual address space of a process that
can be treated as a distinct object to be shared or protected. Thus text, data, and
stack usually form separate regions of a process. Several processes can share a
region. For instance, several processes may execute the same program, and it is
natural that they share one copy of the text region. Similarly, several processes
may cooperate to share a common shared-memory region.

The kernel contains a region table and allocates an entry from the table for
each-active region in the system. Section 6.5 will describe the fields of the region
table and region operations in greater detail, but for now, assume the region table
contains the information to determine where its contents are located in physical
memory. Each process contains a private per process region table, called a pregion
for short. Pregion entries may exist in the process table, the u area, or in a
separately allocated area of memory, dependent on the implementation, but for
simplicity, assume that they are part of the-process table entry. Each pregion entry
points to a region table entry and contains the starting virtual address of the region
in the process. Shared regions may have different virtual addresses in each process.
The pregion entry also contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute. The pregion and the
region structure are analogous to the file table and the inode structure in the file
'system: Several processes can share parts of their address space via a region, much
as they can share access to a file via an inode; each process accesses the region via
a private pregion entry, much as it accesses the inode via private entries in its user -
file descriptor table and the kernel file table. :

Figure 6.2 depicts two processes, A and B, showing their regions, pregions, and
the virtual addresses where the regions are connected. The processes share text
region ’a’ at virtual addresses 8K and 4K, respectively. If process A reads memory
location 8K and process B reads memory location 4K, they read the identical
memory location in region ’a’. The data regions and stack regions of the two
processes are private.

The concept of the region is independent of the memory management policies
implemented by the operating system. Memory management policy refers to the
actions the kernel takes to insure that processes share main memory fairly. For
example, the two memory management policies considered in Chapter 9 are process
swapping and demand paging. The concept of the region is also independent of the
memory management implementation: whether memory is divided into pages or
segments, for example. To lay the foundation for the description of demand paging
algorithms in Chapter 9, the discussion here assumes a memory architecture based
on pages, but it does not assume that the memory management policy is based on
demand paging algorithms.
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Per Proc Region Tables Regio
(Virtual Addresses) egions

Text| 8K
Process b
A Data| 16K

Stack| 32K-

Text{ 4K |——
Process
B Data| 8K

Stackl 32K

Figure 6.2. Processes and Regions

6.2.2 Pages and Page Tables

This section defines the memory model that will be used throughout this book, but
it is not specific to the UNIX system. In a memory management architecture
based on pages, the memory management hardware divides physical memory into a
set of equal-sized blocks called pages. Typical page sizes range from 512 bytes to
4K bytes and are defined by the hardware. Every addressable location in memory
is contained in a page and, consequently, every memory location can be addressed
by a

(page number, byte offset in page)

pair. For example, if a machine has 2% bytes of physical memory and a page size
of 1K bytes, it has 2 22 pages of physical memory; every 32-bit address can be
treated as a pair consisting of a 22-bit page number and a 10-bit offset into the
page (Figure 6.3).

When the kernel assigns physical pages of memory to a region, it need not
assign the pages contiguously or in a particular order. The purpose of paged
memory is to allow greater flexibility in assigning physical memory, analogous to
the assignment of disk blocks to files in a file system. Just as the kernel assigns
blocks to a file to increase flexibility and to reduce the amount of unused space
caused by block fragmentation, so it assigns pages of memory to a region.
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Hexadecimal Address 58432
Binary 0101 1000 0100 0011 0010
Page Number, Page Offset 01 0110 0001 00 0011 0010

In Hexadecimal 161 32

Figure 6.3. Addressing Physical Memory as Pages

Logical Page Number  Physical Page Number

0 177
1 54
2 209
3 17

Figure 6.4. Mapping of Logical to Physical Page Numbers

The kernel correlates the virtual addresses of a region to their physical machine
addresses by mapping the logical page numbers in the region to physical page
numbers on the machine, as shown in Figure 6.4. Since a region is a contiguous
range of virtual addresses in a program, the logical page number is the index into
an array of physical page numbers. The region table entry contains a pointer to a
table of physical page numbers called a page table. Page table entries may also
contain machine-dependent information such as permission bits to allow reading or
writing of the page. The kernel stores page tables in memory and accesses them
like all other kernel data structures.

Figure 6.5 shows a sample mapping of a process into physical memory. Assume
that the size of a page is 1K bytes, and suppose the process wants to access virtual
memory address 68,432. The pregion entries show that the virtual address is in the
stack region starting at virtual address 64K (65,536 in decimal), assuming the
direction of stack growth is towards higher addresses. Subtracting, address 68,432
is at byte offset 2896 in the region. Since each page consists of 1K bytes, the
address is contained at byte offset 84 8 in page 2 (counting from 0) of the region,
located at physical address 986K. Section 6.5.5 (loading a region) discusses the
meaning of the page table entry marked “empty.”

Modern machines use a variety of hardware registers and caches to speed up
the address translation procedure just described, because the memory references
and address calculations would otherwise be too slow. When resuming the
execution of a process, the kernel therefore informs the memory management
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Per Proc Region Table

Page Tables (Physical Addresses)
text 8K \\
data| 32K >
empty
stack [ 4K 137K
. 852K
Virtual Addresses 87K 764K
552K 433K
727K 333K
541K 941K :
\ 783K 1096K
986K 2001K

897K

Figure 6.5. Mapping Virtual Addresses to Physical Addresses

hardware where the page tables and physical memory of the process reside by
loading the appropriate registers. Since such operations are machine dependent
and vary from one implementation to another, this text will not discuss them. The
exercises at the end of the chapter cite specific machine architectures.

Let us use the following simple memory model in discussing memory
management. Memory is organized in pages of 1K bytes, accessed via page tables
as described earlier. The 'system contains a set of memory management register
triples (assume a large supply), such that the first register in the triple contains the
address of a page table in physical memory, the second register contains the first
virtual address mapped via the triple, and the third register contains control
information such as the number of pages in the page table and page access
permissions (read-only, read-write). This model corresponds to the region model,
just described. When the kernel prepares a process for execution, it loads the set of
memory management register triples with the corresponding data stored in the
pregion entries.
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If a process addresses memory locations outside its virtual address space, the
hardware causes an exception condition. For example, if the size of the text region
in Figure 6.5 is 16K bytes and a process accesses virtual address 26K, the hardware
will cause an exception that the operating system handles. Similarly, if a process
tries to access memory without proper permissions, such as writing an address in its
write-protected text region, the hardware will cause an exception. In both these
examples, the process would normally exit; the next chapter provides more detail.

6.2.3 Layout of the Kernel

Although the kernel executes in the context of a process, the virtual memory
mapping associated with the kernel is independent of all processes. The code and
data for the kernel reside in the system permanently, and all processes share it.
When the system is brought into service (booted), it loads the kernel code into
memory and sets up the necessary tables and registers to map its virtual addresses
into physical memory addresses. The kernel page tables are analogous to the page
tables associated with a process, and the mechanisms used to map kernel virtual
addresses are similar to those used for user addresses. In many machines, the
virtual address space of a process is divided into several classes, including system
and user, and each class has its own page tables. When executing in kerne} mode,
the system permits access to kernel addresses, but it prohibits such access when
executing in user mode. Thus, when changing mode from user to kernel as a result
of an interrupt or system call, the operating system collaborates with the hardware
to permit kernel address references, and when changing mode back to user, the
operating system and hardware prohibit such references. Other machines change
the virtual address translation by loading special registers when executing in kernel
mode.

Figure 6.6 gives an example of the virtual addresses of the kernel and a process,
where kernel virtual addresses range from 0 to 4M—1 and user virtual addresses
range from 4M up. There are two sets of memory management triples, one for
kernel addresses and one for user addresses, and each triple points to a page table
that contains the physical page numbers corresponding to the virtual page
addresses. The system allows address references via the kernel register triples only
when in kernel mode; hence, switching mode between kernel and user requires only
that the system permit or deny address references via the kernel register triples.

Some system implementations load the kernel into memory such that most
kernel virtual addresses are identical to their physical addresses and the virtual to
physical memory map of those addresses is the identity function. However, the
treatment of the u area requires virtual to physical address mapping in the kernel.
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Address of ;. No. of Pages
Page Table Virtual Addr in Page Table
Kernel Reg Triple 1 \ 0
Kernel Reg Triple 2 \\ IM

Kernel Reg Triple 3 \\ M

™
User Reg Triple 1 s \41\1
/LN

User Reg Triple 2 4

User Reg Trifle 3 /1 \ \\\

856K 747K 556K 0K 128K 256K
917K 950K 997K 4K 97K 292K
564K 333K 458K 3K 135K 304K
444K : 632K 17K 139K 279K
Process (Region) Page Tables Kernel Page Tables

Figure 6.6. Changing Mode from User to Kernel

6.2.4 The U Area

Every process has a private u area, yet the kernel accesses it as if there were only
one u area in the system, that of the running process. The kernel changes its
virtual address translation map according to the executing process to access the
correct u area. When compiling the operating system, the loader assigns the
variable u, the name of the u area, a fixed virtual address. The value of the u area
virtual address is known to other parts of the kernel, in particular, the module that
does the context switch (Section 6.4.3). The kernel knows where in its memory
management tables the virtual address translation for the u area is done, and it can
dynamically change the address mapping of the u area to another physical address.
The two physical addresses represent the u areas of two processes, but the kernel
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accesses them via the same virtual address.

A process can access its ¥ area when it executes in kernel mode but not when it
executes in user mode. Because the kernel can access only one u area at a time by
its virtual address, the u area partially defines the context of the process that is
running on the system. When the kernel schedules a process for execution, it finds
the corresponding u area in physical memory and makes it accessible by its virtual
address.

Address of Virtual Addr No. of Pages
Page Table in Process in Page Table

Reg Triple 1

Reg Triple 2

(U Area) Reg Triple 3 2M 4
g p \\

=

Page Tables for U.Areas

114K 843K 1879K 184K
708K 794K 290K 176K
143K 361K 450K 209K
565K 847K 770K 477K
Proc A Proc B Proc C Proc D

Figure 6.7. Memory Map of U Area in the Kernel

For example, suppose the u area is 4K bytes long and resides at kernel virtual
address 2M. Figure 6.7 shows a sample memory layout, where the first two
register triples refer to kernel text and data (the addresses and pointers are not
shown), and the third triple refers to the u area for process D. If the kernel wants
to access the u area of process A, it copies the appropriate page table information
for the u area into the third register triple. At any instant, the third kernel register
triple refers to the u area of the currently running process, but the kernel can refer
to the u.area of another process by overwriting the entries for the u area page table
address with a new address. The entries for register triples 1 and 2 do not change
for the kernel, because all processes share kernel text and data.
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6.3 THE CONTEXT OF A PROCESS

The context of a process consists of the contents of its (user) address space and the
contents of hardware registers and kernel data structures that relate to the process.
Formally, the context of a process is the union of its user-level context, register
context, and system-level context.! The user-level context consists of the process
text, data, user stack, and shared memory that occupy the virtual address space of
the process. Parts of the virtual address space of a process that periodically do not
reside in main memory because of swapping or paging still constitute a part of the
user-level context.
The register context consists of the following components.

o The program counter specifies the address of the next instruction the CPU will
execute; the address is a virtual address in kernel or in user memory space.

e The processor status register (PS) specifies the hardware status of the machine
as it relates to the process. For example, the PS usually contains subfields to
indicate that the result of a recent computation resulted in a zero, positive or
negative result, or that a register overflowed and a carry bit is set, and so on.
The operations that caused the PS to be set were done for a particular process,
hence the PS contains the hardware status of the machine as it relates to the
process. Other important subfields typically found in the PS are those that
indicate the current processor execution level (for interrupts) and the current
and most recent modes of execution (such as kernel, user). The subfield that
shows the current execution mode determines whether a process can execute
privileged instructions and whether it can access kernel address space.

e The stack pointer contains the current address of the next entry in the kernel or
user stack, determined by the mode of execution. Machine architectures dictate
whether the stack pointer points to the next free entry on the stack or to the last
used entry. Similarly, the machine dictates the direction of stack growth
toward numerically higher or lower addresses, but such issues are immaterial
for purposes of this discussion.

e The general-purpose registers contain data generated by the process during its
execution. To simplify the following discussion, let us distinguish two general
purpose registers, register 0 and register 1, for additional use in transmitting
information between processes and the kernel.

The system-level context of a process has a “static part” (first three items of ihe
following list) and a “dynamic part” (last two items). A process has one static
part of the system-level context throughout its lifetime, but it can have a variable
number of dynamic parts. The dynamic part of the system-level context should be

1. The terms user-level context, register context, system-level context, and context layers used in this
section are the author’s terminology.
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viewed as a stack of context layers that the kernel pushes and pops on occurrence
of various events. The system-level context consists of the following components.

e The process table entry of a process defines the state of a process, as described
in Section 6.1, and contains control information that is always accessible to the
kernel.

e The u area of a process contains process control information that need be
accessed only in the context of the process. General control parameters such as
the process priority are stored in the process table because they must: be
accessed outside the process context. _

o Pregion entries, region tables and page tables, define the mapping from virtual
to physical addresses and therefore define the text, data, stack, and other
regions of a process. If several processes share common regions, the regions are
considered part of the context of each process, because each process manipulates
the regions independéntly. Part of the memory management task is to indicate
which parts of the virtual address space of a process are not memory resident.

o The kernel stack contains the stack frames of kernel procedures as a process
executes in kernel mode. Although all processes execute the identical kernel
code, they have a private copy of the kernel stack that specifies their particular
invocation of the kernel functions. For instance, one process may invoke the
creat system call and go to sleep waiting for the kernel to assign a‘ new inode,
and another process may invoke the read system call and go to sleep awaiting
the transfer of data from disk to memory. Both processes execute kernel

- functions, but they have separate stacks that contain their private function call
sequence. The kernel must be able to recover the contents of the kernel stack
and the position of the stack pointer to resume ‘execution of a process in kernel
mode. System implementations frequently place the kernel stack in the process
u area, but it is logically independent and can exist in an independently
allocated area of memory. The kernel stack is empty when the process executes
in user mode.

e The dynamic part of the system-level context of a process consists of a set of
layers, visualized as a last-in-first-out stack. Each system-level context layer
contains the necessary information to recover the previous layer, including the
register context of the previous level.

The kernel pushes a context layer ‘when an interrupt occurs, when a process
makes a system call, of when a process does a context switch. It pops a context
layer when the kernel returns from handling an interrupt, when a process returns to
user mode after the kernel completes execution of a system call, or when a process
does a context switch. The context switch thus entails a push and a pop of a
system-level context layer: The kernel pushes the context layer of the old process
and pops the context layer of the new process. The process table entry stores the
necessary information to recover the current context layer.

" Figure 6.8 depicts the components that form the context of a process. The left
side of the figure shows the static portion of the context. It consists of the user-
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Figure 6.8. Components of the Context of a Process

level context, containing the process text (instructions), data, stack, and shared
memory (if the process has any), and the static part of the system-level context,
containing the process table entry, the u area, and the pregion entries (the virtual
address mapping information for the user-level context). The right side of the
figure shows the dynamic portion of the context. It consists of several stack frames,
where each frame contains the saved register context of the previous layer, and the
kernel stack as the kernel executes in that layer. System context layer O is a
dummy layer that represents the user-level context; growth of the stack here is in
the user address space, and the kernel stack is null. The arrow pointing from the
static part of the system-level context to the top layer of the dynamic portion of the
context represents the logical information stored in the process. table entry to enable
the kernel to recover the current context layer of the. process.

A process runs within its context or, more precisely, within its current context
layer. The number of context layers is bounded by the number of interrupt levels
the machine supports. For instance, if a machine supports different interrupt levels
for software interrupts, terminals, disks, all other peripherals, and the clock, it
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supports S interrupt levels, and hence, a process can contain at most 7 context
layers: 1 for each interrupt level, 1 for system calls, and 1 for user-level. The 7
layers are sufficient to hold all context layers even if interrupts occur in the “worst”
possible sequence, because an interrupt of a given level is blocked (that is, the CPU
defers it) while the kernel handles interrupts of that level or higher.

Although the kernel always executes in the context of some process, the logical
function that it executes does not necessarily pertain to that process. For instance,
if a disk drive interrupts the machine because it has returned data, it interrupts the
running process and the kernel executes the interrupt handler in a new system-level
context layer of the executing process, even though the data belongs to another
process. Interrupt handlers do not generally access or modify the static parts of the
process context, since those parts have nothing to do with the interrupt.

6.4 SAVING THE CONTEXT OF A PROCESS

As observed in previous sections, the kernel saves the context of a process whenever
it pushes a new system context layer. In particular, this happens when the system
receives an interrupt, when a process executes a system call, or when the kernel
does a context switch. This section considers each case in detail.

6.4.1 Interrupts and Exceptions

The system is responsible for handling interrupts, whether they result from
hardware (such as from the clock or from peripheral devices), from a programmed
interrupt (execution of instructions designed to cause “software interrupts™), or
from exceptions (such as page faults). If the CPU is executing at a lower processor
execution level than the level of the interrupt, it accepts the interrupt before
decoding the next instruction and raises the processor execution level, so that no
other interrupts of that level (or lower) can happen while it handles the current
interrupt, preserving the integrity of kernel data structures (see Section 2.2.2). The
kernel handles the interrupt with the following sequence of operations:

1. It saves the current register context of the executing process and creates
(pushes) a new context layer.

2. It determines the “source” or cause -of the interrupt, identifying the type of
interrupt (such as clock or disk) and the unit number of the interrupt, if
applicable (such as which disk drive caused the interrupt). When the system
receives an interrupt, it gets a number from the machine that it uses as an
offset into a table, commonly called an interrupt vector. The contents of
interrupt vectors vary from machine to machine, but they usually contain the
address of the interrupt handler for the corresponding interrupt source and a
way of finding a parameter for the interrupt handler. . For example, consider
the table of interrupt handlers in Figure 6.9. If a terminal interrupts the
system, the kernel gets interrupt number 2 from the hardware and invokes the
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Ibterrupt Number  Interrupt Handler
0 clockintr

1 diskintr

2 ttyintr

3 devintr

4 softintr

5 otherintr

Figure 6.9. Sample Interrupt Vector

terminal interrupt handler ttyintr.

The kernel invokes the interrupt handler. The kernel stack for the new
context layer is logically distinct from the kernel stack of the previous context
layer. Some implementations use the kernel stack of the executing process to
store the interrupt handler stack frames, and other implementations use a
global interrupt stack to store the frames for interrupt handlers that are
guaranteed to return without switching context.

The interrupt handler completes it work and returns. The kernel executes a
machine-specific sequence of instructions that restores the register context and
kernel stack of the previous context layer as they existed at the time of the
interrupt and then resumes execution of the restored context layer. The
behavior of the process may be affected by the interrupt handler, since the
interrupt handler may have altered global kernel data structures and
awakened sleeping processes. Usually, however, the process continues
execution as if the interrupt had never happened.

algorithm inthand /* handle interrupts */
input: none
output: none
{
save (push) current context layer;
determine interrupt source;
find interrupt vector;
call interrupt handler;
restore (pop) previous context layer;

Figure 6.10. Algorithm for Handling Interrupts

Figure 6.10 summarizes how the kernel handles interrupts. Some machines do

part of the sequence of operations in hardware or microcode to get better
performance than if all operations were done by software, but there are tradeoffs,
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based on how much of the context layer must be saved and the speed of the

hardware instructions doing the save. The specific operations required in a UNIX
system implementation are therefore machine dependent.

Interrupt Sequence

Kernel Context Layer 3
Execute Clock
Interrupt Handler

Save Register Context
of Disk Interrupt
Handler

Clock Interrupt.........
|

Kernel Context Layer 2
Execute Disk
Interrupt Handler

Save Register Context
of Sys Call

Disk Interrupt..-------.
N

Kernel Context Layer 1
Execute Sys Call

Save Register Context
User Level

Make System Call ..-----

Executing User Mode
Figure 6.11. Example of Interrupts
Figure 6.11 shows an example where a process issues a system call (see the next

section) and receives a disk interrupt while executing the system call. While
executing the disk interrupt handler, the system receives a clock interrupt and
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executes the clock interrupt handler. Every time the system receives an interrupt
(or makes a system call), it creates a new context layer and saves *he register
context of the previous layer.

6.4.2 System Call Interface

The system call interface to the kernel has been described in previous. chapters as
though it were a normal function call. Obviously, the usual calling sequence cannot
change the mode of a process from user to kernel. The C' compiler - uses a.
predefined library of functions (the C library) that have the names of the system
calls, thus resolving the system call references in the user program to whai would
otherwise be undefined names. The library functions typically invoke an instruction
that changes the process execution mode to kernel mode and causes the kernel to
start executing code for system calls. The ensuing discussion refers to the
instruction as an operating system trap. The library routines execute in user mode,
~but the system call interface is, in short, a special case of an interrupt handler.
The library functions pass the kernel a unique number per system call in a
machine-dependent way — either as a parameter to the operating system trap, in a
particular register, or on the stack — and the kernel thus determines the specific
system call the user is invoking.

algorithm syscall /* algorithm for invocation of system call */
input: system call number
({)utput: result of system call
find entry in system call table corresponding to system call number;
determine number of parameters to system call;
copy parameters from user address space to u area;
save current context for abortive return (described in section 6.4.4);
invoke system call code in kernel;
if (error during execution of system call)
{

set register O in user saved register context to error number;

turn on carry bit in PS register in user saved register context;
)
else

set registers 0, 1 in usér saved register context

to return values from system call;

Figure 6.12. Algorithm for System Calls
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In handling the operating system trap, the kernel looks up the system call
number in a table to find the address of the appropriate kernel routine that is the
entry point for the system call and to find the number of parameters the system call
expects (Figure 6.12). The kernel calculates the (user) address of the first
parameter to the system call by adding (or subtracting, depending on the direction
of stack growth) an offset to the user stack pointer, corresponding to the number of
parameters to the system call. Finally, it copies the user parameters to the u area
and calls the appropriate system call routine. After executing the code for the
system call, the kernel determines whether there was error. If so, it adjusts register
locations in the saved user register context, typically setting the “carry” bit for the
PS register.and copying the error number into the register 0 location. If there were
no errors in the execution of the system call, the kernel clears the “carry” bit in the
PS register and copies the appropriate return values from the system call into the
locations for registers 0 and 1 in the saved user register context. When the kernel
returns from the operating system trap to user mode, it returns to the library
instruction after the trap. ' The library interprets the return values from the kernel
and returns a value to the user program.

For example, consider the program that creates a file with read and write
permission for 3ll users (mode 0666) in the first part of Figure 6.13. The second
part of the figure shows an edited portion of the génerated output for the program,
as compiled and disassembled on a Motorola 68000 system. Figure 6.14 depicts the
stack configurations during the system call. The compiler generates code to push
the two parameters onto the user stack, where the first parameter pushed is the
permission mode setting, 0666, and the second parameter pushed is the variable
name.? The process then calls the library function for the creat system call (address
7a) from address 64. The return address from the function call is 6a, and the
process pushes this number onto the stack. The library function for creat moves
the constant 8 into register 0 and executes a trap instruction that causes the process
to change from user mode to kernel mode and handle the system call. The kernel
recognizes that the user is making a system call and recovers the number 8 from
register O to determine that the system call is creat. Looking up an internal table,
the kernel finds that the creat system call takes two parameters; recovering the
stack register of the previous context layer, it copies the parameters from user space
into the u area. Kernel routines that need the parameters can find them in
predictable locations in the ¥ area. When the kernel completes executing the code
for creat, it returns to the system call handler, which checks if the u area error
field is set. (meaning there was some error in the system call); if so, the handler sets
the carry bit in the PS register, places the.error code into register 0, and returns.
If there is no error, the kernel places the system return code into registers O and 1.

2. The order that the compiler evaluates and pushes function parameters is implementation dependent.
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char namel[] = “file”;
main()
{
int fd;
fd = creat(name, 0666);

Portions of Generated Motorola 68000 Assembler Code

Addr Instruction

# code for main

58: mov &0x1b6,(%sp) # move 0666 onto stack
Se: mov  &O0x204,—(%sp)  # move stack ptr

# and move variable “name” or .
64: jsr Ox7a # call C library for creat

# library code for creat

Ta: movq  &0x8,%d0 # move data value 8 into data register 0
Tc: trap &0x0 # operating system trap

Te: bee &0x6 <86> # branch to addr 86 if carry bit clear
80: jmp Ox13c # jump to addr 13c

86: rts # return from subroutine

# library code for errors in system call

13c: mov %d0,&0x20e # move data reg 0 to location 20e (errno) |
142: movq &—0x1,%d0 # move constant —1 into data register 0
144: mova %d0,%a0

146: rts # return from subroutine

Figure 6.13. Creat System Call and Generated Code for Motorola 68000

When returning from the system call handler to user mode, the"C library checks
the carry bit in the PS register at address 7e: If it is set, the process jumps to
address 13c, takes the error code from register 0 and places it into the global
variable errno at address 20e, places a —1 in register 0, and returns to the next
instruction after the call at address 64. The return code for the function is —1,
signifying an error in the system call. If, when returning from kernel mode to user
mode, the carry bit in the PS register is clear, the process jumps from address 7e to
address 86 and returns to the caller (address 64): Register 0 contains the return
value from the system call.
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1b6 | mode value (octal 666) C;(:tr::tl lsat;;l_( 1

204 | address of variable name calling sequence

6a | return address after call to library for create
saved register context

trap for level O (user)
at 7c
diem—as value of program counter 7e
irection o stack pointer stack pointer
stack growth time of tra ps
P reg 0 (input val 8)
other general

purpose registers

Figure 6.14. Stack Configuration for Creat System Call

Several library functions can map into one system call entry point. The system
call entry point defines the true syntax and semantics for every system call, but the
libraries frequently provide a more convenient interface. For example, there are
several flavors of the exec system call, such as exec/ and execle, which provide
slightly different interfaces for one system call. The libraries for these calls
manipulate their parameters to implement the advertised features, but eventually,
map into one kernel entry point.

6.4.3 Context Switch

Referring to the process state diagram in Figure 6.1, we see that the kernel permits
a context switch under four circumstances: when a process puts itself to sleep,
when it exits, when it returns from a system call to user mode but is not the most
eligible process to run, or when it returns to user mode after the kernel completes
handling an interrupt but is not the most eligible process to run. The kernel
ensures integrity and consistency of internal data structures by prohibiting arbitrary
context switches, as explained in Chapter 2. It makes sure that the state of its data
structures is consistent before it does a context switch: that is, that all appropriate
updates are done, that queues are properly linked, that appropriate locks are set to
prevent intrusion by other processes, that no data structures are left unnecessarily
locked, and so on. For example, if the kernel allocates a buffer, reads a block in a
file, and goes to sleep waiting for I/O transmission from the disk to complete, it
keeps the buffer locked so that no other process can tamper with the buffer. But if
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a process executes the link system call, the kernel releases the lock of the first inode
before locking the second inode to avoid deadlocks.

The kernel must do a context switch at the conclusion of the exit system call,
because there is nothing else for it to do. Similarly. the kernel allows a context
switch when a process enters the sleep state, since a considerable amount of time
may elapse until the process wakes up, and other processes can meanwhile execute.
The kernel allows a context switch when a process is not the most eligible to run to
permit fairer process scheduling: If a process completes a system call or returns
from an interrupt and there is another process with higher priority waiting to run,
it would be unfair to keep the high-priority process waiting.

The procedure for a context switch is similar to the procedures for handling
interrupts and system calls, except that the kernel restores the context layer of a
different process instead of the previous context layer of the same process. The
reasons for the context switch are irrelevant. Similarly, the choice of which process
to schedule next.is a policy decision that does not affect the mechanics of the
context switch.

1. Decide whether to do a context switch,
and whether a context switch is permissible now.
2.  Save the context of the “old” process.
3.  Find the “best” process to schedule for execution,
using the process scheduling algorithm in Chapter 8.
4. Restore its context.

Figure 6:15. Steps for a Context Switch

The code that implements the context switch on UNIX systems is usually the
most difficult to understand in the operating system, because function calls give the
appearance of not returning on some occasions and materializing from nowhere on
others. This is because the kernel, in many implementations, saves the process
context at one point in the code but proceeds to execute the context switch and
scheduling algorithms in the context of the “old™ process. When it later restores
the context of the process, it resumes execution according to the previously saved
context. To differentiate between the case where the kernel resumes the context of
a new process and the case where it continues to execute in the old context after
having saved it, the return values of critical functions may vary, or the program
counter where the kernel executes may be set artificially.

"~ Figure 6.16 shows a scenario for doing a context switch. The function
save_context saves information about the context of the running process and returns
the value 1. Among other pieces of information, the kernel saves the value of the
current program counter (in the function save_context) and the value 0, to be used
later as the return value in register 0 from save context. The kernel continues to
execute in the context of the old process (A), picking another process (B) to run
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if (save_context()) /* save context of executing process */

{

/* pick another process to run */

resume_context(new_process);
/* never gets here ! */
}

/* resuming process executes from here */

Figure 6.16. Pseudo-Code for Context Switch

and calling resume context to restore the new context (of B). After the new
context is restored, the system is executing process B; the old process (A) is no
longer executing but leaves its saved context behind (hence, the comment in the
figure “never gets here”). Later, the kernel will again pick process A to run
(except for the exit case, of course) when another process does a context switch, as
just described. When process A’s context is restored, the kernel will set the
program counter to the value process A had previously saved in the function
save_context, and it will also place the value 0, saved for the return value, into
register 0. The kernel resumes execution of process A inside save context even
though it had executed the code up to the call to resume_context before the context
switch. Finally, process A returns from the function save_context with the value 0
(in register 0) and resumes execution after the comment line “resuming process
executes from here.”

6.4.4 Saving Context for Abortive Returns

Situations arise when the kernel must abort its current execution sequence and
immediately execute out of a previously saved context. Later sections dealing with
sleep and signals describe the circumstances when a process must suddenly change
its context; this section explains the mechanisms for executing a previous context.
The-algorithm to save a context is sezjmp and the algorithm to restore the context
is longimp.3 The method is identical to that described for the function save context
in the previous section, except that save_context pushes a new context layer,
whereas setjmp stores the saved context in the u area and continues to execute in

3. These algorithms should not be confused with the library functions of the same name that users can
call directly from their programs (see [SVID 85]). However, their functions are similar.
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the old context layer. When the kernel wishes to resume the context it had saved
in setjmp, it does a longjmp, restoring its context from the u area and returning a
1 from setjmp.

6.4.5 Copying Data between System and User Address Space

As presented so far, a process executes in kernel mode or in user mode with no
overlap of modes. However, many system calls examined in the last chapter move
data between kernel and user space, such as when copying system call parameters
from user to kernel space or when copying data from I/O buffers in the read
system call . Many machines allow the kernel to reference addresses in user space
directly. The kernel must ascertain that the address being read or written is
accessible as if it had been executing in user mode; otherwise, it could override the
ordinary protection mechanisms and inadvertently read or write addresses outside
the user address space (possibly kernel data structures). Therefore, copying data
between kernel space and user space is an expensive proposition, requiring more
than one instruction.

fubyte: # move byte from user space
prober  $3,$1,*4(ap)  # byte accessible?
beql eret # no
movzbl  *4(ap),r0
ret
eret;
mnegl  $1,r0 # error return (—1)
ret

Figure 6.17. Moving Data from User to System Space on a VAX

Figure 6.17 shows sample VAX code for moving one character from user
address space to kernel address space. The prober instruction checks if one byte at
address argument pointer register +4 (*4(ap)) could be read in user mode (mode
3) and, if not, the kernel branches to address eret, stores —1 in register 0, and
returns; the character move failed. Otherwise, the kernel moves one byte from the
given user address to register 0 and returns that value to the caller. The procedure
is expensive, requiring five instructions (with the function call to fubyte) to move 1
character.

6.5 MANIPULATION OF THE PROCESS ADDRESS SPACE

So far, this chapter has described how the kernel switches context between
processes and how it pushes and pops context layers, viewing the user-level context
-as a static object that does not change during restoration of the process context.
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However, various system calls manipulate the virtual address space of a process, as
will be seen in the next chapter, doing so according to well defined operations on
regions. This section describes the region data structure and the operations on
regions; the next chapter deals with the system calls that use the region operations.

The region table entry contains the information necessary to describe a region.
In particular, it contains the following entries:

e A pointer to the inode of the file whose contents were originally loaded into the
region

o The region type (text, shared memory, private data or stack)
e The size of the region
e The location of the region in physical memory
e The status of a region, which may be a combination of
— locked
— in demand

— in the process of being loaded into memory
— valid, loaded into memory
e The reference count, giving the number of processes that reference the region.

The operations that manipulate regions are to lock a region, unlock a region,
allocate a region, attach a region to the memory space of a process, change the size
of a region, load a region from a file into the memory space of a process, free a
region, detach a region from the memory space of a pfocess, and duplicate the
contents of a region. For example, the exec system call, which overlays the user
address space with the contents of an executable file, detaches old regions, frees
them if they were not shared, allocates new regions, attaches them, and loads them
with the contents of the file. The remainder of this section describes the region
operations in detail, assuming the memory management model described earlier
(page tables and hardware register triples) and the existence of algorithms for
allocation of page tables and pages of physical memory (Chapter 9).

6.5.1 Locking and Unlocking a Region

The kernel has operations to lock and unlock a region, independent of the
operations to allocate and free a region, just as the file system has lock-unlock and
allocate-release operations for inodes (algorithms iger and iput). Thus the kernel
can lock and allocate a region and later unlock it without having to free the region.
Similarly, if it wants to manipulate an allocated region, it can lock the region to
prevent access by other processes and later unlock it.

6.5.2 Allocating a Region

The kernel allocates a new region (algorithm allocreg, Figure 6.18) during fork,
exec, and. shmget (shared memory) system calls. The kernel contains a region
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table whose entries appear either on a free linked list or on an active linked list.
When it allocates a region table entry, the kernel removes the first available entry
from the free list, places it on the active list, locks the region, and marks its type
(shared or private). With few exceptions, every process is associated with an
executable file as a result of a prior exec call, and allocreg sets the inode field in
the region table entry to point to the inode of the executable file. The inode
identifies the region to the kernel so that other processes can share the region if
desired. The kernel increments the inode reference count to prevent other processes
from removing its contents when unlinking it, as will be explained in Section 7.5.
Allocreg returns a locked, allocated region.

algorithm allocreg /* allocate a region data structure */
input: (1) inode pointer
(2) region type
output: locked region
{
remove region from linked list of free regions;
assign region type;
assign region inode pointer;
if (inode pointer not null)
increment inode reference count;
place region on linked list of active regions;
return(locked region);

Figure 6.18. Algorithm for Allocating a Region

6.5.3 Attaching a Region to a Process

The kernel attaches a region during the fork, exec, and shmat system calls to
connect it to the address space of a process (algorithm attachreg, Figure 6.19).
The region may be a newly allocated region or an existing region that the process
will share with other processes. The kernel allocates a free pregion cntry, sets its
type field to text, data, shared memory, or stack, and records the virtual address
where the region will exist in the process address space. The process must not
exceed the system-imposed limit for the highest virtual address, and the virtual
addresses of the new region must not overlap the addresses of existing regions. For
example, if the system restricts the highest virtual address of a process to 8
megabytes, it would be illegal to attach a 1 megabyte-size region to virtual address
7.5M. If it is legal to attach the region, the kernel increments the size field in the
process table entry according to the region size, and increments the region reference
count. '
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algorithm attachreg /* attach a region to a process */

input: (1) pointer to (locked) region being attached
(2) process to which region is being attached
(3) virtual address in process where region will be attached
(4) region type

output: per process region table entry

allocate per process region table entry for process;
initialize per process region table entry:

set pointer to region being attached;

set type field;

set virtual address field;
check legality of virtual address, region size;
increment region reference count;
increment process size according to attached region;
initialize new hardware register triple for process;
return(per process region table entry);

Figure 6.19. Algorithm for Attachreg

Attachreg then initializes a new set of memory management register triples for
the process: If the region is not already attached to another process, the kernel
allocates page tables for it in a subsequent call to growreg (next section); otherwise,
it uses the existing page tables. Finally, attachreg returns a pointer to the pregion
entry for the newly attached region. For example, suppose the kernel wants to
attach an existing (shared) text region of size 7K bytes to virtual address 0 of a
process (Figure 6.20): it allocates a new memory management register triple and
initializes the triple with the address of the region page table, the process virtual
address (0), and the size of the page table (9 entries).

6.5.4 Changing the Size of a Region

A process may expand or contract its virtual address space with the sbrk system
call. Similarly, the stack of a process automatically expands (that is, the process
does not make an explicit system call) according to the depth of nested procedure
calls. Internally, the kernel invokes the algorithm growreg to change the size of a
region (Figure 6.21). When a region expands, the kernel makes sure that the
virtual addresses of the expanded region do not overlap those of another region and
that the growth of the region does not cause the process size to become greatér
than the maximum allowed virtual memory space. The kernel never invokes
growreg to increase the size of a shared region that is already attached to several
processes; therefore, it does not have to worry about increasing the size of u region
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Per Process Region Table
Page | Proc | Size
Table | Virt | and
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Figure 6.20. Example of Attaching to an Existing Text Region

for one process and causing another process to grow beyond the system limit for
process size. The two cases where the kernel uses growreg on an existing region are
sbrk on the data region of a process and automatic growth of the user stack. Both
regions are private. Text regions and shared memory regions cannot grow after
they are initialized. These cases will become clear 1n the next chapter.

The kernel now allocates page tables (or extends existing page tables) to
accommodate the larger region and allocates physicai memory on systems that do
not support demand paging. When allocating physical memory, it makes sure such
memory is available before invoking growreg; if the memory is unavailable, it
resorts to other measures to increase the region size, as will be covered in Chapter
9. If the process contracts the region, the kernel simply releases memory assigned
to the region. In both cases, it adjusts the process size and region size and
reinitializes the pregion entry and memory management register triples to conform
to the new mapping.

For example, suppose the stack region .of a process starts at virtual address
128K and currently contains 6K bytes, and the kernel wants to extend the size of
the region by 1K bytes (1 page). If the process size is acceptable and virtual
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algorithm growreg /* change the size of a region */
input: (1) pointer to per process region table entry
(2) change in size of region (may be positive or negative)
output: none
(
if (region size increasing)
{
check legality of new region size;
allocate auxiliary tables (page tables);
if (not system supporting demand paging)
{
allocate physical memory;
initialize auxiliary tables, as necessary;

else /* region size decreasing */

free physical memory, as appropriate;
free auxiliary tables, as appropriate;

)

do (other) initialization of auxiliary tables, as necessary;
set size field in process table;

Figure 6.21. Algorithm Growreg for Changing the Size of a Region

addresses 134K to 135K — 1 do not belong to another region attached to the
process, the kernel extends the size of the region. It extends the page table,
allocates a page of memory, and initializes the new page table entry. Figure 6.22
illustrates this case.

6.5.5 Loading a Region

In a system that supports demand paging, the kernel can “map” a file into the
process address space during the exec system call, arranging to read individual
physical pages later on demand, as will be explained in Chapter 9. If the kernel
does not support demand paging, it must copy the executable file into memory,
loading the process regions at virtual addresses specified in the executable file. It
may attach a region at a different virtual address from where it loads the contents
of the file, creating a gap in the page table (recall Figure 6.20). For example, this
feature is used to cause memory faults when user programs access address 0
illegally. Programs with pointer variables sometimes use them erroneously without
checking that their value is 0 and, hence, that they are illegal for use as a pointer
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Per Process Region Table Per Process Region Table
Page | Proc | Size Page | Proc | Size
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Figure 6.22. Growing the Stack Region by 1K Bytes

reference. By protecting the page containing address 0 appropriately, processes
that errantly access address 0 incur a fault and abort, allowing programmers to
discover such bugs more quickly.

To load a file into a region, loadreg (Figure 6.23) accounts for the gap between
the virtual address where the region is attached to the process and the starting
virtual address of the region data and expands the region according to the amount
of memory the region requires. Then it places the region in the state “being loaded
into memory” and reads the region data into memory from the file, using an
internal variation of the read system call algorithm.

If the kernel is loading a text region that can be shared by several processes, it
is possible that another process could find the region and attempt to use it before its
contents were fully loaded, because the first process could sleep while reading the
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algorithm loadreg /* load a portion of a file into a region */
input: (1) pointer to per process region table entry

(2) virtual address to load region

(3) inode pointer of file for loading region

(4) byte offset in file for start of region

(5) byte count for amount of data to load
output: none

]
{ increase region size according to eventual size of region
! (algorithm growreg);
: mark region state: being loaded intc memory;
) unlock region;
set up u area parameters for reading file:
target virtual address where data is read to,
start offset value for reading file,
count of bytes to read from file;
read file into region (internal variant of read algorithm);
lock region;
mark region state: completely loaded into memory;
awaken all processes waiting for region to be loaded;

Figure 6.23. Algorithm for Loadreg

file. The details of how this could happen and why locks cannot be used are left for
the discussion of exec in the next chapter and in Chapter 9. To avoid a problem,
the kernel checks a region state flag to see if the region is completely loaded and, if
the region is not loaded, the process sleeps. At the end of Joadreg, the kernel
awakens processes that were waiting for the region to be loaded and changes the
region state to valid and in memory.

For example, suppose the kernel wants to load text of size 7K into a region that
is attached at virtual address 0 of a process but wants to leave a gap of 1K bytes at
the beginning of the region (Figure 6.24). By this time, the kernel will have
allocated a region table entry and will have attached the region at address 0 using
algorithms allocreg and artachreg. Now it invokes loadreg, which invokes growreg
twice — first, to account for the 1K byte gap at the beginning of the region, and
second, to allocate storage for the contents of the region — and growreg allocates a
page table for the region. The kernel then sets up fields in the u area to read the
file: It reads 7K bytes from a specified byte offset in the file (supplied as a
parameter by the kernel) into virtual address 1K of the process.
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Figure 6.24. Loading a Text Region

When a region is no longer attached to any processes, the kernel can free the region
and return it to the list of free regions (Figure 6.25). If the region is associated
with an.inode, the kérnel releases the inode using algorithm iput, corresponding to
the increment of the inode reference count in allocreg. The kernel releases physical
resources associated with the region, such as page tables and memory pages. For
example, suppose the kernel wants to free the stack region in Figure' 6.22.
Assuming the region reference count. is 0, it releases the 7 pages of physical
memory and the pagée table.
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algorithm freereg /* free an allocated region */
input: pointer to a. (locked) region
output: none

if (region reference count non zero)

{
/* some process still using region */
release region lock;
if (region has an associated inode)
release inode lock;
return;
}

if (region has associated inode)
release inode (algorithm iput);
free physical memory still associated with region;
free auxiliary tables associated with region;
clear region fields;
place region on region free list;
unlock region;

Figure 6.25. Algorithm for Freeing a Region

algorithm detachreg /* detach a region from a process */
input: pointer to per process region table entry
output: none

{

get auxiliary memory management tables for process,

release as appropriate;

decrement process size;

decrement region reference count;

if (region reference count is 0 and region not sticky bit)
free region (algorithm freereg);

Tlse /* either reference count non-0 or region sticky bit on */
free inode lock, if applicable (inode associated with region);
free region lock;

)

Figure 6.26. Algorithm Detachreg
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6.5.7 Detaching a Region from a Process

The kernel detaches regions in the exec, exit, and shmdt '(detach shared memory)
systerh calls. It updates the pregion entry and severs the connection to physical
memory by invalidating the associated memory management register triple
(algorithm detachreg, Figure 6.26). The address translation mechanisms thus
invalidated apply specifically to the process, not to the region (as in algorithm
freereg). The kernel decrements the region reference count and the size field in the
process table entry according to the size of the region. If the region reference
count drops to 0 and if there is no reason to leave the region intact (the region is
not a shared memory region or a text region with the sticky bit on, as will be
described in Section 7.5), the kernel frees the region using algorithm freereg.
Otherwise, it releases the region and inode locks, which had been locked to prevent
race conditions as will be described in Section 7.5 but leaves the region and ics
resources allocated.

Per Process Region Tables Regions
Text Shared
Data
Stack
Proc A Private
Text Private Data
Data Copy
Stack
Proc B Private
Private

Figure 6.27. Duplicating a Region
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algorithm dupreg /* duplicate an existing region */
input: pointer to region table entry
output: pointer to a regiorn that looks identical to input region

if (region type shared)
/* caller will increment region reference count
* with subsequent attachreg call
*/
return(input region pointer);

allocate new region (algorithm allocreg);

set up auxiliary memory management structures, as currently
exists in input region;

allocate physical memory for region contents;

"copy" region contents from input region to newly allocated
region;

return(pointer to allocated region);

Figure 6.28. Algorithm for Dupreg

6.5.8 Duplicating a Region

The fork system call requires that the kernel duplicate the regions of a process. If
a region is"shared (shared text or shared memory), however, the kernel need not
physically copy the region; instead, it increments the region reference count,
allowing the parent and child processes to share the region. If the region is not
shared and the kernel must physi¢ally copy the region, it allocates a new region
table entry, page table, and physical memory for the region. In Figure 6.27 for
example, process A forked process B and duplicated its regions. The text region of
process A is shared, so process B can share it with process A. But the data and
stack regions of ' process A are private, so process B duplicates them by copying
their contents to newly allocated regions. Even for private regions, a physical copy
of the region is not always necessary, as will be seen (Chapter 9). Figure 6.28
shows the algorithm for dupreg.

6.6 SLEEP

So far, this chapter has covered all the low-level functions thai are executed for the
transitions to and from the state “kernel running” except for the functions that
move a process into the sleep state. It will conclude with a presentation of the
algorithms for sleep, which changes the process state from “kernel running” to
“asleep in memory,” and .wakeup, which changes the process state from “asleep” to
“ready to run” in memory or swapped.
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Figure 6.29. Typical Context Layers of a Sleeping Process

When a process goes to sleep, it typically does so during execution of a system
call: The process enters the kernel (context layer 1) when it executes an operating
system trap and goes to sleep awaiting a resource. When the process goes to sleep,
it does a context switch, pushing its current context layer and executing in kernel
context layer 2 (Figure 6.29). Processes also go to sleep when they incur page
faults as a result of accessing virtual addresses that are not physically loaded; they
sleep while the kernel reads in the contents of the pages.

6.6.1 Sleep Events and Addresses

Recall from Chapter 2 that processes are said to sleep on an event, meaning. that
they are in the sleep state until the event occurs, at which time they wake up and
enter a “ready-to-run” state (in memory or swapped out). Although the system
uses the abstraction of sleeping on an event, the implementation maps the set of
events into a set of (kernel) virtual addnes§es. The addresses that represent the
events are coded into the kernel, and their only significance is. that the kernel
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proc a awaiting I/0 completio
proc b
addr A
proc ¢
waiting for buffer
proc d
proc e
proc f waiting for inode ———————addr B
proc g
proc h waiting for terminal input addr C

Figure 6.30. Processes Sleeping on Events and Events Mapping into Addresses

expects an event to map into a particular address. The abstraction of the event
does not distinguish how many processes are awaiting the event, nor does the
implementation. As a result, two anomalies arise. First, when an event occurs and
a wakeup call is issued for processes that are sleeping on the event, they all wake
up and move from a sleep state to a ready-to-run state. The kernel does not wake
up one process at a time, even though they may contend for a single locked
structure, and many may go back to sleep after a brief visit to the kernel running
state (recall the discussion in Chapters 2 and 3). Figure 6.30 shows several
processes sleeping on events.

The second anomaly in the implementation is that several events may map into
one address. In Figure 6.30, for example, the events “waiting for the buffer” to
become free and “awaiting I/0 completion” map into the address of the buffer
(“addr A”). When I/O for the buffer completes, the kernel wakes up all processes
sleeping on both events. Since a process waiting for I/O keeps the buffer locked,
other processes waiting for the buffer to become free will go back to sleep if the
buffer is still locked when they execute. It would be more efficient if there would
be a one-to-one mapping of events to addresses. In practice, however, performance
is not hurt, because the mapping of multiple events into one address is rare and
because the running process usually frees the locked resource before -the other
processes are scheduled to run. Stylistically, however, it would make the kernel a
little easier to understand if the mapping were one-to-one.
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SLEEP

algorithm sleep
input: (1) sleep address
(2) priority
output: 1 if process awakened as a result of a signal that process catches,
longjump algorithm if process awakened as a result of a signal
that it does not catch,
0 otherwise;

raise processor execution level to block all interrupts;
set process state to sleep;
put process on sleep hash queue, based on sleep address;
save sleep address in process table slot;
set process priority level to input priority;
if (process sleep is NOT interruptible]
{
do context switch;
/* process resumes execution here when it wakes up */
reset processor priority level to allow interrupts as when
process went to sleep;
return(0);

}

/* here, process sleep is interruptible by signals */
if (no signal pending against process)

do context switch;
/* process resumes execution here when it wakes up */
if (no signal pending against process)

reset processor priority level to what it was when
process went to sleep;
return(0);

}
}

remove process from sleep hash queue, if still there;

reset processor priority level to what it was when process went to sleep;

if (process sleep, priority set to catch signals)
‘return(1)
do longjmp algorithm;

Figure 6.31. Sleep Algorithm
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6.6.2 Algorithms for Sleep and Wakeup

Figure 6.31 shows the algorithm for sleep. The kernel first raises the processor
execution level to block out all interrupts so that there can be no race conditions
when it manipulates the sleep queues, and it saves the old processor execution level
so that it can be restored when the process later wakes up. It marks the process
state “asleep,” saves the sleep address and priority in the process table, and puts it
onto a hashed queue of sleeping processes. In the simple case (sleep cannot be
interrupted), the process does a context switch and is safely asleep. When a
sleeping process wakes up, the kernel later schedules it to run: The process returns
from its context switch in the sleep algorithm, restores the processor execution level
to the value it had when the process entered the algorithm, and returns.

algorithm wakeup /* wake up a sleeping process */
input: sleep address
({)utput: none
raise processor execution level to block all interrupts;
find sleep hash queue for sleep address;
for (every process asleep on sleep address)

remove process from hash queue;
mark process state "ready to run”;
put process on scheduler list of processes ready to run;
clear field in process table entry for sleep address;
if (process not loaded in memory)
wake up swapper process (0);
else if (awakened process is more elligible to run than
currently running process)
set scheduler flag;

}

restore processor execution level to original level;

Figure 6.32. Algorithm for Wakeup

To wake up sleeping processes, the kernel executes the wakeup algorithm
(Figure 6.32), either during the usual system call algorithms or when handling an
interrupt. For instance, the algorithm iput releases a locked inode and awakens all
processes waiting for the lock to become free. Similarly, the disk interrupt handler
awakens a process waiting for I/O completion. The kernel raises the processor
execution level in wakeup to block out interrupts. Then for every process sleeping
on the input sleep address, it marks the process state field “ready to run,” removes
the process from the linked list of sleeping processes, places it on a linked list of
processes eligible for scheduling, and clears the field in the process table that
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marked its sleep address. If a process that woke up was not loaded in memory, the
kernel awakens the swapper process to swap the process into memory (assuming the
system is one that does not support demand paging); otherwise, if the awakened
process is more eligible to run than the currently executing process, the kernel sets
a scheduler flag so that it will go through the process scheduling algorithm when
the process returns to user mode (Chapter 8). Finally, the kernel restores the
processor execution level. It cannot be stressed enough: wakeup does not cause a
process to be scheduled immediately; it only makes the process eligible for
scheduling.

The discussion above is the simple case of the sleep and wakeup algorithms,
because it assumes that the process sleeps until the proper event occurs. Processes
frequently sleep on events that are “sure” to happen, such as when awaiting a
locked resource (inodes or buffers) or when awaiting completion of disk 1/0. The
process is sure to wake up because the use of such resources is designed to be
temporary. However, a process may sometimes sleep on an event that is not sure to
happen, and if so, it must have a way to regain control and continue execution. For
such cases, the kernel “interrupts” the sleeping process immediately by sending it a
signal. The next chapter explains signals in great detail; for now, assume that the
kernel can (selectively) wake up a sleeping process as a result of the signal, and
that the process can recognize that it has been sent a signal.

For instance, if a process issues a read system call to a terminai, the kernel does
not satisfy the call until a user types data on the terminal keyboard (Chapter 10).
However, the user that started the process may leave the terminal for an all-day
meeting, leaving the process asleep and waiting for input, and another user may
want to use the términal. If the second user resorts to drastic measures (such as
turning the terminal off), the kernel needs a way to recover the disconnected
process: As a first step, it must awaken the process from its sleep as the result of a
signal. Parenthetically, there is nothing wrong with processes sleeping for a long
time. Sleeping process occupy a slot in the process table and could thus lengthen
the search times for certain algorithms, but they do not use CPU time, so their
overhead is small.

To distinguish the types of sleep states, the kernel sets the scheduling priority of
the sleeping process when it enters the sleep state, based on the sleep priority
parameter. That is, it invokes the sleep algorithm with a priority value, based on
its knowledge that the sleep event is sure to occur or not. If the priority is above a
threshold value, the process will not wake up prematurely on receipt of a signa} but
will sleep until the event it is waiting for happens. But if the priority value is below
the threshold value, the process will awaken immediately on receipt of the signal.

4. The terms “above” and “below” refer to the normal usage of the terms high priority and low priority.
However, the kernel implementation uses integers to measure the priority value, with lower values
implying higher priority.
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If a signal is already set against a process when it enters the sleep algorithm,
the conditions just stated determine whether the process ever gets to sleep. For
instance, if the sleep priority is above the threshold value, the process goes to sleep
and waits for an explicit wakeup call. If the sleep priority is below the threshold
value, however, the process does not go to sleep but responds to the signal as if the
signal had arrived while it was asleep. If the kernel did not check for signals before
going to sleep, the signal may not arrive again and the process would never wake
up.

When a process is awakened as a result of a signal (or if it never gets to sleep
because of existence of a signal), the kernel may do a longjmp, depending on the
reason the process originally went to sleep. The kernel does a longjmp to restore a
-previously saved context if it has no way to complete the system call it is executing.
For instance, if a terminal read call is interrupted because a user turns the terminal
off, the read should not complete but should return with an error indication. This
holds for all system calls that can be interrupted while they are asleep. The process
should not continue normally after waking up from its sleep, because the sleep
event was not satisfied. The kernel saves the process context at the beginning of
most system calls using setjmp in anticipation of the need for a later longjmp.

There are occasions when the kernel wants the process to wake up on receipt of
a signal but not do a longjmp. The kernel invokes the sleep algorithm with a
special priority parameter that suppresses execution of the /ongimp and causes the
sleep algorithm to return the value 1. This is more efficient than doing a setjmp
immediately before the sleep call and then a longjmp to restore the context of the
process as it was before entering the sleep state. The purpose is to allow the kernel
to clean up local data structures. For example, a device driver may allocate private
data structures and then go to sleep at an interruptible priority; if it wakes up
because of a signal, it should free the allocated data structures, then longjmp if
necessary. The user has no control over whether a process does a longjmp; that
depends on the reason the process was sleeping and whether kernel data structures
need modification before the process returns from the system call.

6.7 SUMMARY

This chapter has defined the context of a process. Processes in the UNIX system
move between various logical states according to well-defined transition rules, and
state information is saved in the process table and the u area. The context of a
process consists of its user-level context and its system-level context. The user-level
context consists of the process text, data, (user) stack, and shared memory regions,
and the system-level context consists of a static part (process table entry, u area,
and memory mapping information) and a dynamic part (kernel stack and saved
registers of previous system context layer) that is pushed and popped as the process
executes system calls, handles interrupts, and does context switches. The user-level
context of a process is divided into separate regions, comprising contiguous ranges
of virtual addresses that are treated as distinct objects for protection and sharing.
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The memory management model used to describe the virtual address layout of a
process assumes the use of a page table for each process region. The kernel
contains various algorithms that manipulate regions. Finally, the chapter described
the algorithms for sleep and wakeup. The following chapters use the low-level
structures and algorithms described here, in the explanation of the system calls for
process management, process scheduling, and the implementation of memory
management policies.

6.8 EXERCISES

1. Design an algorithm that translates virtual addresses to physical addresses, given the
virtual address and the address of the pregion entry.

2. The AT&T 3B2 computer and the NSC Series 32000 use a two-tiered (segmented)
translation scheme to translate virtual addresses to physical addresses. That is, the
system contains a pointer to a table of page table pointers, and each entry in the table
can address a fixed portion of the process address space, according to its offset in the
table. Compare the algorithm for virtual address translation on these machines to the
algorithm discussed for the memory model in the text. Consider issues of performance
and the space needed for auxiliary tables.

3. The VAX-11 architecture contains two sets of base and limit registers that the
machine uses for user address translation. The scheme is the same as that described
in the previous problem, except that the number of page table pointers is two. Given
that processes have three regions, text, data, and stack, what is a good way of mapping
the regions into page tables and using the two sets of registers? The stack in the
VAX-11 architecture grows towards lower virtual addresses. What should the stack
region look like? Chapter 11 will describe another region for shared memory: How
should it fit into the VAX-11 architecture?

4. Design an algorithm for allocating and freeing memory pages and page tables. What
data structures would allow best performance or simplest implementation?

S. The MC68451 memory management unit for the Motorola 68000 Family of
Microprocessors allows allocation of memory segments with sizes ranging from 256
bytes to 16 megabytes in powers of 2. Each (physical) memory management unit
contains 32 segment descriptors. Describe an efficient method for memory allocation.
What should the implementation of regions look like?

6. Consider the virtual address map in Figure 6.5. Suppose the kernel swaps the process
out (in a swapping system) or swaps out many pages in the stack region (in a paging
system). If the process later reads (virtual) address 68,432, must it read the identical
location in physical memory that it would have read before the swap or paging
operation? If the lower levels of memory management were implemented with page
tables, must the page tables be located in the same locations of physical memory?

* 7. It is possible to implement the system such that the kernel stack grows on top of the
user stack. Discuss the advantages and disadvantages of such an implementation.’

8. When attaching a region to a process, how can the kernel check that the region does
not overlap virtual addresses in regions already attached to the process?

9. Consider the algorithm for doing a context switch. Suppose the system contains only
one process that is ready to run. In other words, the kernel picks the process that just
saved its context to run. Describe what happens.
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Suppose a process goes to sleep and the system contains no processes ready to run.
What happens when the (about to be) sleeping process does its context switch?
Suppose that a process executing in user mode uses up its time slice and, as a result of
a clock interrupt, the kernel schedules a new process to run. Show that the context
switch takes place at kernel context layer 2.

In a paging system, a process executing in user mode may incur a page fault because
it is attempting to access a page that is not loaded in memory. In the course of
servicing the interrupt, the kernel reads the page from a swap device and goes to sleep.
Show that the context switch (during the sleep) takes place at kernel context layer 2.
A process executes the system call

read(fd, buf, 1024);

on a paging system. Suppose the kernel executes algorithm read to the point where it
has read the data into a system buffer, but it incurs a page fault when trying to copy
the data into the user address space because the page containing buf was paged out.
The kernel handles the interrupt by reading the offending page into memory. What
happens in each kernel context llayer.? What happens if the page fault handler goes to
sleep while waiting for the page to be written into main memory?

When copying data from user address space to the kernel in Figure 6.17, what would
happen if the user supplied address was illegal? ‘

In algorithms sleep and wakeup, the kernel raises the processor execution level to
prevent interrupts. What bad things could happen if it did not raise the processor
execution level? (Hint: The kernel frequently awakens sleeping processes from
interrupt handlers.)

Suppose a process attempts to go to sleep on event A but has not yet executed the
code in the sleep algorithm to block interrupts; suppose an interrupt occurs before the
process raises the processor execution level in sleep, and the interrupt handler attempts
to awaken all processes asleep on event A. What will happen to the process
attempting to go to sleep? Is this a dangerous situation? If;so, how can the kernel
avoid it?

What happens if the kernel issues a wakeup call for all processes asleep on address A,
but no processes are asleep on that address at the time?

Many processes can sleep on an address, but the kernel may want to wake up selected
processes that receive a signal. Assume the signal mechanism can identify the
particular processes. Describe how the wakeup algorithm should be changed to wake
up cne process on a sleep address instead of all the processes.

The Multics system contains algorithms for sleep and wakeup with the following
syntax:

sleep(event);
wakeup(event, priority);

That is, the wakeup algorithm assigns a priority to the process it is awakening
Compare these calls to the sleep and wakeup calls in the UNIX system.
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CONTROL

The last chapter defined the context of a process and explained the algorithms that
manipulate it; this chapter will describe the use and implementation of the system
calls that control the process context. The fork system call creates a new process,
the exit call terminates process execution, and the wait call allows a parent process
to synchronize its execution with the exit of a child process. Signals inform
processes of asynchronous events. Because the kernel synchronizes execution of
exit and wait via signals, the chapter presents signals before exit and wait. The
exec system call allows a process to invoke a “new’ program, overlaying its address
space with the executable image of a file. The brk system call allows a process to
allocate more memory dynamically; similarly, the system allows the user stack to
grow dynamically by allocating more space when necessary, using the same
mechanisms as for brk. Finally, the chapter sketches the construction of the major
loops of the shell and of init.

Figure 7.1 shows the relationship between the system calls described in this
chapter and the memory management algorithms described in the last chapter.
Almost all calls use sleep and wakeup, not shown in the figure. Furthermore, exec
interacts with the file system algorithms described in Chapters 4 and 5.
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System Calls Dealing System Calls Dealing

. . .. Miscellaneous
with Memory Management with Synchronization - ¢

fork exec brk exit wait [signal killFetpgrp setuid

dupreg |detachreg|growreg [detachreg
attachreg | allocreg
attachreg
growreg
loadreg
mapreg

Figure 7.1. Process System Calls and Relation to Other Algorithms

7.1 PROCESS CREATION

The only way for a user to create a new process in the UNIX operating system is
to invoke the fork system call. The process that invokes fork is called the parent
process, and the newly created process is called the child process. The syntax for
the fork $ystem call is

pid = fork(;

On return from the fork system call, the two processes have identical copies of their
user-level context except for the return value pid. In the parent process, pid is the
child process ID; in the child process, pid is 0. Process 0, created internally by the
kernel when the system is booted, is the only process not created via fork.

The kernel does the following sequence of operations for fork.

—

It allocates a slot in the process table for the new process.

2. It assigns a unique ID number to the child process.

3. It makes a logical copy of the context of the parent process. Since certain
portions of a process, such as the text region, may be shared between
processes, the kernel can sometimes increment a region reference count
instead of copying the region to a new physical location in memory.

4. It increments file and inode table counters for files associated with the
process.

5. It returns the ID number of the child to the parent process, and a 0 value to

the child process.

The implementation of the fork system call is not trivial, because the child process
appears to start its execution sequence out of thin air. The algorithm for fork
varies slightly for demand paging and swapping systems; the ensuing discussion is
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based on traditional swapping systems but will point out the places that change for
demand paging systems. It also assumes that the system has enough main memory
available to store the child process. Chapter 9 considers the case where not enoug'
memory is available for the child process, and it also describes the implementatio-
of fork on a paging system.

algorithm fork

input: none

output: to parent process, child PID number
to child process, 0

{

check for available kernel resources;
get free proc table slot, unique PID number;
check that user not running too many processes;
mark child state "being created;"
copy data from parent proc table slot to new child slot;
increment counts on current directory inode and changed root (if applicable):
increment open file counts in file table;
make copy of parent context (u area, text, data, stack) in memory;
push dummy system level context layer onto child system level context;
dummy context contains data allowing child process
to recognize itself, and start running from here
when scheduled;
if (executing process is parent process)

change child state to "ready to run;"
return(child ID); /* from system to user */
}
else /* executing process is the child process */
{
initialize u area timing fields;
return(0); /* to user */

Figure 7.2. Algorithm for Fork

Figure 7.2 shows the algorithm for fork. The kernel first ascertains that it has
available resources to complete the fork successfully. On a swapping system, it
needs space either in memory or on disk to hold the child process;-on a paging
system, it has to allocate memory for auxiliary tables such as page tables. If the
resources are unavailable, the fork call fails. The kernel finds a slot in the process
table to start constructing the context of the child process and makes sure that the
user doing the fork does not have too many processes already running. It also picks
a unique ID number for the new process, one greater than the most recently
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assigned ID number. If another process already has the proposed ID number, the -
kernel attempts to assign the next higher ID number. When the ID numbers reach
a maximum value, assignment starts from G again. Since most processes execute
for a short time, most ID numbers are not in use when ID assignment wraps
around.

The system imposes a (configurable) limit on the number of processes a user
can simultaneously execute so that no user can steal many process table slots,
thereby preventing other users from creating new processes. Similarly, ordinary
users cannot create a process that would occupy the last remaining slot in the
process table, or else the system could effectively deadlock. That is, the kernel
cannot guarantee that existing processes will exit naturally and, therefore, no new
processes could be created, because all the process table slots are in use. On the
other hand, a superuser can execute as many processes as it likes, bounded by the
size of the process table, and a superuser process can occupy the last available slot
in the process table. Presumably, a superuser could take drastic action and spawn
a process that forces other processes to exit if necessary (see Section 7.2.3 for the
kill system call).

The kernel next initializes the child’s process table slot, copying various fields
from the parent slot. For instance, the child “inherits” the parent process real and
effective user ID numbers, the parent process group, and the parent nice value, used
for calculation of scheduling priority. Later sections discuss the meaning of these
fields.” The kérnel assigns the parent process ID field in the child slot, putting the
child in the process tree structure, and initializes various scheduling parameters,
such as the initial priority value, initial CPU usage, and other timing fields. The
initial state of the process is "being created" (recall Figure 6.1).

The kernel now adjusts reference counts for files with which the child process is
automatically associated. First, the child process resides in the current directory of
the parent process. The number of processes that currently access the directory
increases by 1 and, accordingly, the kernel increments its inode reference count.
Second, if the parent process or one of its ancestors had ever executed the chroot
system call to change its root, the child process inherits the changed root and
increments its inode reference count. Finally, the kernel searches the parent’s user
file descriptor table for open files known to the process and increments the global
file table reference count associated with each open file. Not only does the child
process inherit access rights to open files, but it also shares access to the files with
the parent process because both processes manipulate the same file table entries.
The effect of fork is similar to that of dup vis-a-vis open files: A new entry in the
user file descriptor table points to the entry in the global file table for the open file.
For dup, however, the entries in the user file descriptor table are in one process; for
Jork, they are in different processes.

The kernel is now ready to create the user-level context of the child process. It
allocates memory for the child process u area, regions, and auxiliary page tablcs,
duplicates every region in the parent process using algorithm dupreg, and.attaches
every region to the child process using algorithm attachreg. In a swapping system,
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it copies the cortents of regions that are not shared into a new area of main
memory. Recall from Section 6.2.4 that the u area contains a pointer to its process
table slot. Except for that field, the contents of the child u area are initially the
same as the contents of the parent process u area, but they can diverge after
completion of the fork. For instance, the parent process may open a new file after
the fork, but the child process does not have automatic access to it.

So far, the kernel has created the static portion of the child context; now it
creates the dynamic portion. The kernel copies the parent context layer 1,
containing the user saved register context and the kernel stack frame of the fork
system call. If the implementation is one where the kernel stack is part of the u
area, the kernel automatically creates the child kernel stack when it creates the
child u area. Otherwise, the parent process must copy its kernel stack to a private
-area of memory associated with the child process. In either case, the kernel stacks
for the parent and child processes are identical. The kernel then.creates a dummy
context layer (2) for the child process, containing the saved register context for
context layer (1). It sets the program counter and other registers in the saved
register context so that it can “restore” the child context, even though it had never
executed before, ‘and so that the child process can recognize itself as the child when
it runs. For instance, if the kernel code tests the value of register 0 to decide if the
process is the parent or the child, it writes the appropriate value in the child saved
register context in layer 1. The mechanism is similar to that discussed for a
context switch in the previous chapter.

When the child context is ready, the parent completes its part of fork by
changing the child state to “ready to run (in memory)” and by returning the child
process ID to the user. The kernel later schedules the child process for execution
via the normal scheduling algorithm, and the child process “completes” its part of
the fork. The context of the child process was set up by the parent process; to the
kernel, the child process appears to have awakened after awaiting a resource. The
child process executes part of the code for the fork system call, according to the
program counter that the kernel restored from the saved register context in context
layer 2, and returns a O from the system call.

Figure 7.3 gives a logical view of the parent and child processes and their
relationship to other kernel data structures immediately after completion of the
fork system call. To summarize, both processes share files that the parent had
open at the time of the fork, and the file table reference count for those files is one
greater than it had been. Similarly, the child process has the same- current
directory and changed root (if applicable) as the parent, and the inode reference
count of those directories.is one greater than it had been. The processes have
identical copies of the text, data, and (user) stack regions; the region type and the
system implementation determine whether the processes can share a physical copy
of the text region. '

Consider the program in Figure 7.4, an example of sharing file access across a
Sfork system ¢all. A yser should invoke the program with two parameters, the name
of an existing file and the name of a new file to be created. The process opens the
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Figure 7.3. Fork Creating a New Process Context

existing file, creats the new file, and — assuming it encounters no errors — forks
and creates a child process. Internally, the kernel makes a copy of the parent
context for the child process, and the parent process executes in one address space
and the child process executes in gnother. Each process can access private copies of
the global variables fdrd, fdwt, and c and private copies of the stack variables argc
and argv, but neither process can access the variables of the other process.
However, the kernel copied the u area of the original process toche child process
during the fork, and the child thus inherits access to the parent files (that is, the
files the parent originally opened and created) using the same file descriptors.
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#tinclude <fentl.h>
int fdrd, fdwt;
char c;

main(argc, argv)
int argc;
char *argvl];

if (argc !=3)
exit(1);

if ((fdrd = open(argv(1], O RDONLY)) == —1)
exit(1);

if ((fdwt = creat(argv[2], 0666)) == —1)
exit(1);

fork);
/* both procs execute same code */
rdwrtQ;
exit(0);
]

rdwrt()

{
for (;)
{ .

if (read(fdrd, &c, 1) '=1)
return;

write(fdwt, &c, 1);

Figure 7.4. Program where Parent and Child Share File Access

The parent and child processes call the function rdwrt, independently, of course,
and execute a loop, reading one byte from the source file and writing it to the
target file. The function rdwrt returns when the read system call encounters the
end of file. The kérnel had incremented the file table counts of the source and
target files, and the file descriptors in both processes refer to the same file table
entries. That is, the file descriptors fdrd for both.processes refer to the file table
entry for the source file, and the file descriptors fdwt for both processes refer to the
file table entry for the target file. Therefore, the two processes never read or write
the same file offset values, because the kernel increments them after each read and
write call. Although the processes appear to copy the source file twice as fast
because they share the work load, the contents of the target file depend on the
order that the kernel scheduled the processes. If it schedules the processes such
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that they alternate execution of their system calls, or- even if they alternate the
execution of pairs of read-write system calls, the contents of the target file would
be identical to the contents of the source file. But consider the following scenario
where the processes are about to read the two character sequence “ab” in the
source file. Suppose the parent process reads the character ’a’, and the kernel does
a context switch to execute the child process before the parent does the write. If
the child process reads the character b’ and writes it to the target file before the
parent is rescheduled, the target file will not contain the string “ab” in the proper
place, but “ba”. The kernel does not guarantee the relative rates of process
execution.

Now consider the program in Figure 7.5, which inherits file descriptors 0 and 1
(standard input and standard output) from its parent. The execution of each pipe
system call allocates two more file descriptors in the arrays fo_par and to_chil,
respectively. The process forks and makes a copy of its context: each process can
access its own data, as in the previous example. The parent process closes its
standard output file (file descriptor 1), and dups the write descriptor returned for
the pipe to_chil. Because the first free slot in the parent file descriptor table is the
slot just cleared by the close, the kernel copies the pipe write descriptor to slot 1 in
the file descriptor table, and the standard output file descriptor becomes the pipe
write descriptor for to chil. The parent process does a similar operation to make
its standard input descriptor the pipe read descriptor for to_par. Similarly, the
child process closes its standard input file (descriptor 0) and dups the pipe read
descriptor for to_chil. Since the first free slot in the file descriptor table is the
previous standard input slot, the child standard input becomes the pipe read
descriptor for to_chil. The child does a similar set of operations to make its
standard output the pipe write descriptor for to par. Both processes close the file
descriptors returred from pipe — good programming practice, as will be explained.
As a result, when the parent writes its standard output, it is writing the pipe
_ to_chil and sending data to the child process, which reads the pipe on its standard
input. When the child writes its standard output, it is writing the pipe to_par and
sending data to the parent process, which reads the pipe on its standard input. The
processes thus exchange messages over the two pipes.

The results of this example are invariant, regardless of the order that the
processes execute their respective system calls. That is, it makes no difference
whether the parent returns from the fork call before the child or afterwards.
Similarly, it makes no difference in what relative order the processes execute the
system calls until they enter their loops: The kernel structures are identical. If the
child process executes its read system call before the parent does its write, the child
process will sleep until the parent writes the pipe and awakens it. If the parent
process writes the pipe before the child reads the pipe, the parent will not complete
its read of standard input until the child reads its standard input and writes its
standard output. From then on, the order of execution is: fixed: Each process
completes a read and write, system call and cannot complete its next read system
call until the other process completes a read and write system . call. The parent
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PROCESS CREATION

#include <string.h>
char string[] = “hello world”;
main(

int count, i;

int to_par(2], to_chill2]; /* for pipes to parent, child */
char bufl256];

pipe(to_par);

pipe(to_chil);

if (fork(Q == 0)

{
/* child process executes here */
close(0); /* close old standard input */
dup(to_chill0]); /* dup pipe read to standard input */
close(1); /* close old standard output */
dup(to_par[1]);  /* dup pipe write to standard out */
close(to_par[1]); /* close unnecessary pipe descriptors */
close(to_chill0));
close(to_par[0]);
close(to_chill 1D);
{or G)
if ((count = read(0, buf, sizeof(buf))) == 0)
exitQ;
write(1, buf, count);
}
}
/* parent process executes here */
close(1); /* rearrange standard in, out */
dup(to_chill1]);
close(0);
dup(to_parl0));
close(to_chill1));
close(to_par{0));
close(to_chill0]);
close(io_par[1]);
t{'or i=0;, i <15 i++)
write(1, string, strlen(string));
read (0, buf, sizeof (buf));
}

Figure 7.5. Use of Pipe, Dup, and Fork

199
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exits after 15 iterations through the loop; the child then reads “end-of-file” becausé
the pipe has no writer processes and exits. If the child were to write the pipe after
the parent had exited, it would receive a signal for writing a pipe with no reader
processes.

We mentioned above that it is good programming practice to close superfluous
file descriptors. This is true for three reasons. First, it conserves file descriptors in
view of the system-imposed limit. Second, if a child process execs, the_file
descriptors remain assigned in the new context, as will be seen. Closing extraneous
files before an exec allows programs to execute in a clean, surprise-free
environment, with only standard input, standard output, and standard error file
descriptors open. Finally, a read of a pipe returns end-of-file only if no processes
have the pipe open for writing. If a reader process keeps the pipe write descriptor
open, it will never know when the writer processes close their end of the pipe. The
example above would not work properly unless the child closes its write pipe
descriptors before entering its loop.

7.2 SIGNALS

Signals inform processes of the occurrence of asynchronous events. Processes may
send each other signals with the kill system call, or the kernel may send signals
internally. There are 19 signals in the System V (Release 2) UNIX system that
can be classified as follows (see the description of the signal system call in [SVID
85]):

e Signals having to do with the termination of a process, sent when a process
exits or when a process invokes the signal system call with the death of child
parameter;

o Signals having to do with process induced exceptions such as when a process
accesses an address outside its virtual address space, when it attempts to write
memory that is read-only (such as program text), or when it executes a
privileged instruction or for various hardware errors;

e Signals having to do with the unrecoverable conditions during a system call,
such as running out of system resources during exec after the original address
space has been released (see Section 7.5)

o Signals caused by an unexpected error condition during a system call, such as
making a nonexistent system call (the process passed a system call number that
does not correspond to a legal system call), writing a pipe that has no reader
processes, or using an illegal “reference” value for the Iseek system call. It
would be more consistent to return an error on such system calls instead of
generating a signal, but the use of signals to abort misbehaving processes is
more pragmatic;'
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o Signals originating from a process in user mode, such as whén a process wishes
to receive an alarm signal after. a period of time, or when processes send
arbitrary signals to each other with the kill system call;

e Signals related to terminal interaction such as when a user hangs up a terminal
(or the “carrier” signal drops on such a line for any reason), or when a user
presses the “break™ or “delete” keys on a terminal keyboard;

o Signals for tracing execution of a process.

The discussion in this and in following chapters explains the circumstances under
which signals of the various classes are used.

The treatment of signals has several facets, namely how the kernel sends a
signal to a process, how the process handles a signal, and how a process controls its
reaction to signals. To send a signal to a process, the kernel sets a bit in the signal
field of the process table entry, corresponding to the type of signal received. If the
process is asleep at an interruptible priority, the kernel awakens it. The job of the
sender (process or kernel) is complete. A process can remember different types of
signals, but it has no memory of how many signals it receives of a particular type.
For example, if a process receives a hangup signal and a kill signal, it-sets the
appropriate bits in the process table signal field, but it cannot tell how many
instances of the signals it receives. '

The kernel checks for receipt of a signal when a process is about to return from
kernel mode to user mode and when it enters or leaves the sleep state at a suitably
low scheduling priority (see Figure 7.6). The kernel handles signals only when a
process returns from kernel mode to user mode. Thus, a signal does not have an
instant effect on a process running in kernel mode. .If a process is running in user
mode, and the kernel handles an interrupt that causes a signal to be sent to the
process, the kernel will recognize and handle the signal when it returns from the
interrupt. Thus, a process never executes in user mode before handling outstanding
signals.

Figure 7.7 shows the algorithm the kernel executes to determine if a process
received a signal. The case for “death of child” signals will be treated later in the
chapter. As will be seen, a process can choose to ignore signals with the signal
system call. In the algorithm issig, the kernel simply turns off the signal indication
for signals the process wants to ignore but notes the existence of signals it does not
ignore.

1. The use of signals in some circumstances uncovers errors in programs. that do not check for failure of
system calls (private communication from D. Ritchie).
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User Running

interrupt,
interrupt return
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6 wakeup
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Figure 7.6. Checking and Handling Signals in the Process State Diagram
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algorithm issig /* test for receipt of signals */
input: none
output: true, if process received signals that it does not ignore
false otherwise
{
while (received signal field in process table entry not 0)
{
find a signal number sent to the process;
if (signal is death of child)
{
if (ignoring death of child signals)
free process table entries of zombie children;
else if (catching death of child signals)
return(true);
}
else if (not ignoring signal)
return(true);
turn off signal bit in received signal field in process table;
)
return(false);
}

Figure 7.7. Algorithm for Recognizing Signals

7.2.1 Handling Signals

The kernel handles signals in the context of the process that receives them so a
process must run to handle signals. There are three cases for handling signals: the
process exits on receipt of the signal, it ignores the signal, or it executes a
particular (user) function on receipt of the signal. The default action is to call exit
in kernel mode, but a process can specify special action to take on receipt of certain
signals with the signal system call.

The syntax for the signal system call is

oldfunction = signal(signum, function);

where signum is the signal number the process is specifying the action for, function
is the address of the (user) function the process wants to invoke on receipt of the
signal, and the return value oldfunction was the value of function in the most
recently specified call to signal for signum. The process can pass the values 1 or 0
instead of a function address: The process will ignore future occurrences of the
signal if the parameter value is 1 (Section 7.4 deals with the special case for
ignoring the “death of child” signal) and exit in the kernel on receipt of the signal
if its value is O (the default value). The u area contains an array of signal-handler
fields, one for each signal defined in the system. The kernel stores the address of
the user function in the field that corresponds to the signal number. Specification
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algorithm psig  /* handle signals after recognizing their existence */
input: none
output: none
{
get signal number set in process table entry;
clear signal number in process table entry;
if (user had called signal sys call to ignore this signal)
return; /* done */
if (user specified function to handle the signal)
{
get user virtual address of signal catcher stored in u area;
/* the next statement has undesirable side-effects */
clear u area entry that stored address of signal catcher,
modify user level context:
artificially create user stack frame to mimic
call to signal catcher function;
modify system level context:
write address of signal catcher into program
counter field of user saved register context;
return;

)

if (signal is type that system should dump core image of process)

create file named "core" in current directory;
write contents of user level context to file "core”;

}

invoke exit algorithm immediately;

Figure 7.8. Algorithm for Handling Signals

to handle signals of one type has no effect on handling signals of other types.

When handling a signal (Figure 7.8) the kernel determines the signal type and
turns off the appropriate signal bit in the process table entry, set when the process
received the signal. If the signal handling function is set to its default value, the
kernel will dump a “core” image of the process (see exercise 7.7) for certain types
of signals before exiting. The dump is a convenience to programmers, allowing
them to ascertain its causes and, thereby, to debug their programs. The kernel
dumps core for signals that imply something is wrong with a process, such as when
a process executes an illegal instruction or when it accesses an address cutside its
virtual address space. But the kernel does. not dump core for signals that do not
imply a program error. For instance, receipt of an interrupt signal, sent when a
user hits the “delete” or “break™ key on a terminal, implies that the user wants to
terminate a process prematurely, and receipt of a hangup signal implies that the
login terminal is no longer “connected.” These signals do not imply that anything
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is wrong with the process. The quit signal, however, induces a core dump even
though it is initiated outside the running process. Usually sent. by typing the
control-vertical-bar character at the terminal, it allows the programmer to obtain a
core dump of a running process, useful for one that is in an infinite loop.

When a process receives a signal that it had previously decided to ignore, it
continues as if the signal had never occurred. Because the kernel does not reset the
field in the u area that shows the signal is ignored, the process will ignore the signal
if it happens again, too. If a process receives a signal that it had previously decided
to catch, it executes the user specified signal handling function immediately when it
returns to user mode, after the kernel does the following steps.

1. The kernel accesses the user saved register context, finding the program
counter and stack pointer that it had saved for return to the user process.

2. It clears the signal handler field in the u area, setting it to the default state.

3. The kernel creates a new stack frame on the user stack, writing in the values
of the program counter and stack pointer it had retrieved from the user saved
register context and allocating new space, if necessary. The user stack looks
as if the process had called a user-level function (the signal catcher) at the
point where it had made the system call or where the kernel had interrupted
it (before recognition of the signal).

4. The kernel changes the user saved register context: It resets the value for the
program counter to the address of the signal catcher function and sets the
value for the stack pointer to account for the growth of the user stack.

After returning from the kernel to user mode, the process will thus execute the
signal handling function; when it returns from the signal handling function, it
returns to the place in the user code where the system call or interrupt originally
occurred, mimicking a return from the system call or interrupt.

For example, Figure 7.9 contains a program that catches interrupt signals
(SIGINT) and sends itself an interrupt signal (the result of the kill call here), and
Figure 7.10 contains relevant parts of a disassembly of the -load module on a VAX
11/780. When the system executes the process, the call to the kill library routine
comes from address (hexadecimal) ee, and the library routine executes the chmk
(change mode to kernel) instruction at address 10a to call the kill system call. The
return address from the system call is 10c. In executing the system call, the kernel
sends an interrupt signal to the process. The kernel notices the interrupt signal
when it is about to return to user mode, removes the address 10c from the user
saved register context, and places it on the user stack. The kernel takes the address
of the function catcher, 104, and puts it into the user saved register context.
Figure 7.11 illustrates the states of the user stack and saved register context.

Several anomalies exist in the algorithm described here for the treatment of
signals. First and most important, when a process handles a signal but before it
returns to user mode, the kernel clears the field in the u area that contains the
address of the user signal handling function. If the process wants to handle the
signal again, it must call the signal system call again. This has unfortunate
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#include <signal.h>
main(

(

extern catcher();
signal (SIGINT, catcher);

kill(0, SIGINT);
}
catcher()
{
)

Figure 7.9. Source Code for a Program that Catches Signals

**** VAX DISASSEMBLER ****

_main(

e4:
e6: pushab 0x18(pc)
ec: pushl $0x2

# next line calls signal
ee: calls $0x2,0x23 (pc)
fs:  pushl $0x2
f7:  clrl —(sp)

# next line calls kill library routine
f9: calls $0x2,0x8 (pc)

100: ret

101:  halt

102: halt

103:  halt
_catcher()

104:

106: ret

107:  halt
_killQ

108:

# next line traps into kernel
10a: chmk $0x25
10c:  bgequ 0x6 <0x114>
10e: jmp 0x14(pc)
114:  clrl r0
116: ret

Figure 7.10. Disassembly of Program that Catches Signals
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User Stack User Stack
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User Saved User Saved
Reg Context Reg Context
Kernel Context Layer 1 Kernel Context Layer 1
Register Save Area Register Save Area

Figure 7.11. User Stack and Kernel Save Area Before and After Receipt of Signal

ramifications: A race condition results because a second instance of the signal may
arrive before the process has a chance to invoke the system call. Since the process
is executing in user mode, the kernel could do a context switch, increasing the
chance that the process will receive the signal before resetting the signal catcher.
The program in Figure 7.12 illustrates the race condition. The procéss calls the
signal system call to arrange to catch interrupt signals and execute the function
sigcatcher. It then creates a child process, invokes the nice system call to lower its
scheduling priority relative to the child process (see Chapter 8), and goes into an
infinite loop. The child process suspends execution for 5 seconds to give the parent
process time to execute the nice system call and lower its priority. The child
process then goes into a loop, sending an interrupt signal (via kill) to the parent
process during each iteration. If the kill returns because of an error, probably
because the parent process no longer exists, the child process exits. The idea is
that the parent process should invoke the signal catcher every time it receives an
interrupt signal. The signal catcher prints a message and calls signal again to
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#include <signal.h>

sigcatcher()

{
printf(“PID %d caught one\n”, getpid());  /* print proc id */
signal (SIGINT, sigcatcher);

}

main()
{
int ppid;

signal (SIGINT, sigcatcher);

if (fork() === 0)
{
/* give enough time for both procs to set up */
sleep(5); /* lib function to delay 5 secs */
ppid = getppid();  /* get parent id */
for ;)
if (kill (ppid, SIGINT) == —1)
exit(;

}

/* lower priority, greater chance of exhibiting race */
nice(10);
for ()

Figure 7.12. Program Demonstrating Race Condition in Catching Signals

catch the next occurrence of an interrupt signal, and the parent continues to
execute in the infinite loop.
It is possible for the following sequence of events to occur, however.

1. The child process sends an interrupt signal to the parent process.

2. The parent process catches the signal and calls the signal catcher, but the
kernel preempts the process and switches context before it executes the signal
system call again.

3. The child process executes again and sends another interrupt signal to the
parent process.

4. The parent process receives the second interrupt signal, but it has not made
arrangements to catch the signal. When it resumes execution, 1t exits.

The program was written to encourage such behavior, since invo¢ation of the nice
system call by the parent process induces the kernel to schedule the child process
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more frequently. However, it is indeterminate when this result will occur.

According to Ritchie (private communication), signals were designed as events
that are fatal or ignored, not necessarily handled, and hence the race condition was
not fixed in early releases. However, it poses a serious problem to programs that
want to catch signals. The problem, would be solved if the signal field were not
cleared on receipt of the signal. But such a solution could result in a new problem:
If signals keep arriving and are caught, the user stack could grow out of bounds
because of the nested calls to the signal catcher.. Alternatively, the kernel could
reset the value of the signal-handling function to ignore signals of that type until
the user again specifies what to do for such signals. Such a solution implies a loss
of information, because the process has no way of knowing how many signals it
receives. However, the loss of information is no more severe than it is for the case
where the process receives many signals of one type before it has a chance to
handle them. Finally, the BSD system allows a process to block and unblock
receipt of signals with a new system call; when a process unblocks signals, the
kernel sends pending signals that had been blocked to the process. When a process
receives a signal, the kernel automatically blocks further receipt of the signal until
the signal handler completes. This is analogous to how the kernel reacts to
hardware interrupts: it blocks report of new interrupts while it handles previous
interrupts.

A second anomaly in the treatment of signals concerns catching signals that
occur while the process is in a system call, sleeping at an interruptible priority.
The signal causes the process to take a longjmp out of its sleep, return to user
mode, and call the signal handler. When the signal handler returns, the process
appears to return from the system call with an error indicating that the system call
was interrupted. The user can check for the error return and restart the system
call, but it would sometimes be more convenient if the kernel automatically
restarted the system call, as is done in the BSD system.

A third anomaly exists for the case where the process ignores a signal. If the .
signal arrives while the process is asleep at an interruptible sleep priority level, the
process will wake up but will not do a longjmp. That is,. the kernel realizes that
the process ignores the signal only after waking it up and running it. A more
consistent policy would be to leave the process asleep. However, the kernel stores
the signal function address in the u area, and the u area may not be accessible
when the signal is sent to the process. A solution to this problem would be to store
the signal function address in the process table entry, where the kernel could check
whether it should awaken the process on receipt of the signal. Alternatively, the
process could immediately go back to sleep in the sleep algorithm, if it discovers
that it should not have awakened. Nevertheless, user processes never realize that
the process woke up, because the kernel encloses entry to the sleep algorithm in a
“while” loop (recall from Chapter 2), putting the process back to sleep if the sleep
event did not really occur.

Finally, the kernel does not treat “death of child” signals the same as other
signals. In particular, when the process recognizes that it has received a “death of
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child” signal, it turns off the notification of the signal in the process table entry
signal field and in the default case, it acts as if no-signal had been sent. The effect
of a “death of child” signal is to wake up a process sleeping at interruptible
priority. If the process catches “death of child” signals, it invokes the user handler
as it does for other signals. The operations that the kernel does if the process
ignores ‘“death of child” signals will be discussed in Section 7.4. Finally, if a
process invokes the signal system call with “death of child” parameter, the kernel
sends the calling process a ‘“death of child” signal if it has child processes in the
zombie state. Section 7.4 discusses the rationale for calling signal with the *“death
of child” parameter.

7.2.2 Process Groups

Although processes on a UNIX system are identified by a unique ID number, the
system must sometimes identify processes by “group.” For instance, processes with
a common ancestor process that is a login shell are generally related, and therefore
all such processes receive signals when a user hits the ‘“delete” or “break™ key or
when the terminal line hangs up. The kernel uses the process group ID to identify
groups of related processes that should receive a common signal for certain events.
It saves the group ID in the process table; processes in the same process group have
identical group ID’s.

The set_pgrp system call initializes the process group number of a process and
sets it equal to the value of its process ID. The syntax for the system call is

grp = setpgrp();
where grp is the new process group number. A child retains the process group

‘number of its parent during fork. Setpgrp also has important ramifications for
setting up the control terminal of a process (see Section 10.3.5).

7.2.3 Sending Signals from Processes
Processes usé the kill system call to send signals. The syntax for the system call is
kill(pid, signum)

where pid identifies the set of processes to receive the signal, and signum is the
signal number being sent. The following list shows the correspondence between
values of pid and sets of processes.

e If pid is a positive integer, the kernel sends the signal to the process with
process ID pid.

o If pid is 0, the kernel sends the signal to all processes in the sender’s process
group.

o If pid is —1, the kernel sends the signal to all processes whose real user ID
equals the effective user ID of the sender (Section 7.6 will define real and
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effective user ID’s). If the sending process has effective user ID of superuser,
the kernel sends the signal to all processes except processes 0 and 1.

o If pid is a negative integer but not —1, the kernel sends the signal to all
processes in the process group equal to the absolute value of pid.

In all cases, if the sending process does not have effective user ID of superuser, or
its real or effective user ID do not match the real or effective user ID of the
receiving process, kill fails.

#include <signal.h>
main()

{

register int i;

setpgrp();
for (=0; i<10; i++)
{
if (fork() == 0)
{
/#* child proc */ .
ifG&1)
setpgrp();
printf(“pid = %d pgrp = %d\n”, getpid 0, getpgrp() ;
pause(); /* sys call to suspend execution */
}
)
kill (0, SIGINT);

Figure 7.13. Sample Use of Setpgrp

In the program in Figure 7.13, the process resets its process group number and
creates 10 child processes. When created, each child process has the same process
group number as the parent prooess, but processes created during odd iterations of
the loop reset their process group number. The system calls getpid and getpgrp
return the process ID and the group ID of the executing process, and thc pause
system call suspencs execution of the process until it receives a signal. Finally, the
parent executes the kill system call and sends an interrupt signal to all processes in
its process group. The kernel sends the signal to the 5 “even” processes that did
not reset their process group, but the 5 “odd” processes continue to loop.
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7.3 PROCESS TERMINATION

Processes on a UNIX system terminate by executing the exit system call. An
exiting process enters the zombie state (recall Figure 6.1), relinquishes its
resources, and dismantles its context except for its slot in the process table. The
syntax for the call is

exit(status);

where the value of status is returned to the parent process for its examination.
Processes may call exit explicitly or implicitly at the end of a program: the startup
routine linked with all C programs calls exit when the program returns from the
main function, the entry point of all programs. Alternatively, the kernel may
invoke exit internally for a process on receipt of uncaught signals as discussed
above. If so, the value of status is the signal number.

The system imposes no time limit on the execution of a process, and processes
frequently exist for a long time. For instance, processes 0 (the swapper) and 1
(init) exist throughout the lifetime of a system. Other examples are gerty
processes, which monitor a terminal line, waiting for a user to log in, and special-
purpose administrative processes.

algorithm exit
input: return code for parent process
output: none

ignore all signals;
if (process group leader with associated control terminal)
{
send hangup signal to all members of process group;
reset process group for all members to 0;

close all open- files (internal version of algorithm close);

release current directory (algorithm iput);

release current (changed) root, if exists (algorithm iput);

free regions, memory associated with process (algorithm freereg);

write accounting record;

make process state zombie

assign parent process ID of all child processes to be init process (1);
if any children were zombie, send death of child signal to init;

send death of child signal to parent process;

context switch;

Figure 7.14. Algorithm ror Exit
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Figure 7.14 shows the algorithm for exit. The kernel first disables signal
handling for the process, because it no longer makes any sense to handle signals. If
the exiting process is a‘process group leader associated. with a control terminal (see
Section 10.3.5), the kernel assumes the user is not doing any useful work and sends
a “hangup” signal to all processes in the process group. Thus, if a user types “end
of file” (control-d character) in the login shell while some processes associated with
the terminal are still alive, the exiting process will send them a hangup signal. Tke
kernel also resets the process group i.umber to O for processes in the process group,
because it is possible that another process will later get the process ID of the
process that just exited and that it too will be a process group leader. Processes
that belonged to the old process group will not belong to the later process grouvp.
The kernel then goes through the open file descriptors, closing each one internally
with algorithm close, and releases the inodes it had accessed for the current
directory and changed root (if it exists) via algorithm iput.

The kernel now releases all user memory by freeing the appropriate regions with
algorithm detachreg and changes the process state to zombie. It saves the exit
status code and the accumulated user and kernel execution time of the process and
its descendants in the process table. The description of wait in Section 7.4 shows
how a process gets the timing data for descendant processes. The kernel also writes
an accounting record to a global accounting file, containing various run-time
statistics such as user ID, CPU and memory usage, and amount of 1/0O for the
process. User-level programs can later read the accounting file to gather various
statistics, useful for performance monitoring and customer billing. Finally, the
kernel disconnects the process from the process tree by making process 1 (init)
adopt all its child processes. That is, process 1 becomes the legal parent of all live
children that the exiting process had created. If any of the children are zombie,
the exiting process sends init a “death of child” signal so that init can remove them
from the process table (see Section 7.9); the exiting process sends its parent a
“death of child” signal, too. In the typical scenario, the parent process executes a
wait system call to synchronize with the exiting child. The now-zombie process
does a context switch so that the kernel can schedule another process to execute;
the kernel never schedules a zombie process to execute.

In the program in Figure 7.15, a process creates a child process, which prints its
PID and executes the pause system call, suspending itself until it receives a signal.
The parent prints the child’s PID and exits, returning the child’s PID as its status
code. If the exit call were not present, the startup routine calls exit when the
process returns from main. The child process spawned by the parent lives on urtil
it receives a signal, even though the parent process is gone.

7.4 AWAITING PROCESS TERMINATION

A process can synchronize its execution with the termination of a child process by
executing the wait system call. The syntax for the system call is
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main()

{

int child;

if ((child = fork(})) == 0)
{
printf("ckild PID %d\n", getpid());
pause(); /* suspend execution until signal */
}
/* parent */
printf("child PID %d\n", child);
exit(child);

Figure 7.15. Example of Exit

pid = wait(stat_addr);

where pid is the process ID of the zombie child, and stat addr is the address in
user space of an integer that will contain the exit status code of the child.

Figure 7.16 shows the algorithm for wait. The kernel searches for a zombie
child of the process and, if there are no children, returns an error. If it finds a
zombie child, it extracts the PID number and the parameter supplied to the child’s
exit call and returns those values from the system call. An exiting process can
thus specify various return codes to give the reason it exited, but many programs
do not consistently set it in practice. The kernel adds the accumulated time the
child process executed in user and in kernel mode to the appropriate fields in the
parent process u area and, finally, releases the process table slot formerly dccupied
by the zombie process. The slot is now available for a new process.

If the process executing wait has child processes but none are zombie, it sleeps
at an interruptible priority until the arrival of a signal. The kernel does not contain
an explicit wake up call for a process sleeping in wait: such processes only wake up
on receipt of signals. For any signal except “death of child,” the process will react
as described above. However, if the signal is “death of child,” the process may
respond differently.

1

o I ilic default case, it will wake up from its sleep in wait, and sleep invokes

«'y cithm issig to check for signals. Issig (Figure 7.7) recognizes the special

« vf “death of child” signals and returns “false.” Consequently, the kernel

ot “long jump” from sleep, but returns to wait. The kernel will restart

© . wait loop, find a zombie child — at least one is guaranteed to exist, release
the child’s process table slot, and return from the wait system call.

e If the process catches “death of child” signals, the kernel arranges to call the

user signal-handler routine, as it does for ‘other signals.
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algorithm wait
input: address of variable to store status of exiting process
output: child ID, child exit code
(
if (waiting process has no child processes)
return(error);

for (;;) /* loop until return from inside loop */
{

if (waiting process has zombie child)

pick arbitrary zombie child;
add child CPU usage to parent;
free child process table entry;
return(child ID, child exit code);
}
if (process has no children)
return error;
sleep at interruptible priority (event child process exits);

Figure 7.16. Algorithm for Wait

o If the process ignores “death of child” signals, the kernel restarts the wait loop,
frees the process table slots of zombie children, and searches for mere children.

For example, a user gets different results when invoking the program in Figure
7.17 with or without a parameter. Consider first the case where a user invokes the
program without a parameter (argc is 1, the program name). The (parent) process
creates 15 child processes that eventually exit with return code i, the value of the
loop variable when the child was created. The kernel, executing wait for the
parent, finds a zombie child process and returns its process ID and exit code. It is
indeterminate which child process it finds. The C library code for the exit system
call stores the exit code in bits 8 to 15 of ret_code and returns the child process ID
for the wait call. Thus ret_code equals 256*i, depending on the value of i for the
child process, and ret_val equals the value of the child process ID.

If a user invokes the above program with a parameter (argc > 1), the (parent)
process calls signal to ignore *“death of child” signals. Assume the parent process
sleeps in wait before any child processes exit: When a child process exits, it sends
a “death of child” signal to the parent process; the parent process wakes up because
its sleep in wait is at an interruptible priority. When the parent process eventually
runs, it finds that the outstanding signal was for “death of child”’; but because it
ignores “death of child” signals, the kernel removes the entry of the zombie child
from the process table and continues executing wait as if no signal had happened.
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#include <signal.h>
main(argc, argv)

int argc;

char *argvl];

int i, ret_val, ret_code;

if (argc >=1)
signal (SIGCLD, SIG_IGN); /* ignore death of children */
for (=0; i <15 i++)
if (fork() == 0)
{
/* child proc here */
printf(“child proc %x\n”, getpid());
exit(i);
)
ret_val = wait(&ret_code);
printf(“‘wait ret_val %x ret_code %x\n”, ret_val, ret_code);

Figure 7.17. Example of Wait and Ignoring Death of Child Signal

The kernel does the above procedure each time the parent receives a “death of
child” signal, until it finally goes through the wait loop and finds that the parent
has no children. The wait system call then returns a —1. The difference between
the two invocations of the program is that the parent process waits for the
termination of any child process in the first case but waits for the termination of all
child processes in the second case.

Older versions of the UNIX system implemented the exit and wait system calls
without the “death of child” signal. Instead of sending a “death of child” signal,
exit would wake up the parent process. If the parent process was sleeping in the
wait system call, it would wake up, find a zombie child, and return. If it was not
sleeping in the wait system call, the wake up would have no effect; it would find a
zombie child on its next wait call. Similarly, the init process would sleep in wait,
and exiting processes would wake it up if it were to adopt new zombie processes.

The problem with that implementation is that it is impossible to clean up
zombie processes unless the parent executes wait. If a process creates many
children but never executes wait, the process table will become cluttered with
zombie children when the children exit. For example, consider the dispatcher
program in Figure 7.18. The process reads its standard input file until it
encounters the end of file, creating a child process for each read. However, the
parent process does not wait for the termination of the child process, because it
wants to dispatch processes as fast as possible and the child process may take too
long until it exits. If the parent makes the signal cali to ignore “death of child”
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#tinclude <signal.h>
main(argc, argv)

char buf{256];

if (argc != 1)
signal (SIGCLD, SIG_IGN); /* ignore death of children */
while (read(0, buf, 256))
if (forkQ == 0)
{
/* child proc here typically does something with buf */
exit(0);

Figure 7.18. Example Depicting the Reason for Death of Child Signal

signals, the kernel will release the entries for the zombie processes automatically.
Otherwise, zombie processes would eventually fill the maximum allowed slots of the
process table.

7.5 INVOKING OTHER PROGRAMS

The exec system call invokes another program, overlaying the memory space of a
process with a copy of an executable file. The contents of the user-level context
that existed before the exec call are no longer accessible afterward except for exec’s
parameters, which the kernel copies from the old address space to the new address
‘space. The syntax for the system call is

execve(filename, argv, envp)

where filename is the name of the executable file being invoked, argv is a pointer to
an array of character pointers that are parameters to the executable program, and
envp is a pointer to an array of character pointers that are the environment of the
executed program. There are several library functions that call the exec system
call such as execl, execv, execle, and so on. All call execve eventually, hence it is
used here to specify the exec system call. When a program uses command line
parameters, as in

main(argc, argv)

the array argv is a copy of the argv parameter to exec. The character strings in
the environment are of the form “name=value” and may contain useful information
for programs, such as the user’s home directory and a path of directories to search
for executable programs. Processes can access their environment via the global
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algorithm exec
input: (1) file name
(2) parameter list
(3) environment variables list
output: none
{
get file inode (algorithm namei);
verify file executable, user has permission to execute;
read file headers, check that it is a load module;
copy exec parameters from old address space to system space;
for (every region attached to process)
detach all old regions (algorithm detach);
for (every region specified in load module)

allocate new regions (algorithm allocreg);
attach the regions (algorithm attachreg);
load region into memory if appropriate (algorithm loadreg);
)
copy exec parameters into new user stack region;
special processing for setuid programs, tracing;
initialize user register save area for return to user mode;
release inode of file (algorithm iput);

Figure 7.19. Algorithm for Exec

variable environ, initialized by the C startup routine.

Figure 7.19 shows the algorithm for the exec system call. Exec first accesses
the file via algorithm namei to determine if it is an executable, regular
(nondirectory) file and to determine if the user has permission to execute the
program. The kernel then reads the file header to determine the layout of the
executable file.

Figure 7.20 shows the logical format of an executable file as it exists in the file
system, typically generated by the assembler or loader. It consists of four parts:

1. The primary header describes how many sections are in the file, the start
address for process execution, and the magic number, which gives the type of
the executable file.

2. Section headers describe each section in the file, giving the section size, the
virtual addresses the section should occupy when running in the system, and
other information.

3. The sections contain the “data,” such as text, that are initially loaded in the -
process address space. .

4. Miscellaneous sections may contain symbol tables and other data, useful for
debugging. v
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Figure 7.20. Image of an Executable File
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Specific formats have evolved through the years, but all executable files have
contained a primary header with a magic number.

The magic number is a short integer, which identifies the file as a load module

and enables the kernel to distinguish run-time characteristics about it.

For

example, use of particular magic numbers on a PDP 11/70 informed the kernel
that processes could use up to 128K bytes of memory instead of 64K bytes, but the
magic number still plays an important role in paging systems, as will be seen in

Chapter 9.

2. The values of the magic numbers were the values of PDP 11 jump instructions; original versions of
the system executed the instructions, and the program counter jumped to various locations depending
on the size of the header and on the type of executable file being executed! This feature was no
longer in use by the time the system was written in C. :
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At this point, the kernel has accessed the inode for the executable file and has
verified that it can execute it. It is about to free the memory resources that
currently form the user-level context of the process. But since the parameters to
the new program are contained in the memory space about to be freed, the kernel
first copies the arguments from the old memory space to a temporary buffer until it
attaches the regions for the new memory space.

Because the parameters to exec-are user addresses of arrays of character strings,
the kernel copies the address of the character string and then the character string
to kernel space for each character string. It may choose several places to store the
character strings, dependent on the implementation. The more popular places are
the kernel stack (a local array in a kernel routine), unallocated areas (such.as
pages) of memory that can be borrowed temporarily, or secondary memory such as
a swapping device.

The simplest implementation for copying parameters to the new user-level
context is to use the kernel stack. But because system configurations usually
impose a limit on the size of the kernel stack and because the exec parameters can
have arbitrary length, the scheme must be combined with another. Of the other
choices, implementations use the fastest method. If it is easy to allocate pages of
memory, such a method is preferable since access to primary memory is faster than
access to secondary memory (such as a swapping device).

After copying the exec parameters to a holding place in the kernel, the kernel
detaches the old regions of the process using algorithm detachreg. Special
treatment for text regions will be discussed later in this section. At this point the
process has no user-level context, so any errors that it incurs from now on result in
its termination, caused by a signal. Such errors include running out of space in the
kernel region table, attempting to load a program whose size exceeds the system
limit, attempting to load a program whose region addresses overlap, and others.
The kernel allocates and attaches regions for text and data, loading the contents of
the executable file into main memory (algorithms allocreg, attachreg, and
loadreg). The data region of a process is (initially) divided into two parts: data
initialized at compile time and data not initialized at compile time (“bss”). The
initial allocation and attachment of the data region is for the initialized data. The
kernel then increases the size of the data region using algorithm growreg for the
“bss™ data, and initializes the value of the memory to 0. Finally, it allocates a
region for the process stack, attaches it to the process, and allocates memory to
store the exec parameters. If the kernel has saved the exec parameters in memory
pages, it can use those pages for the stack. -Otherwise, it copies the exec
parameters to the user stack.

The kernel clears the addresses of user signal catchers from the u area, because
those addresses, are meaningless in the new user-level context. Signals that are
ignored remain ignored in the new context. Then the kernel sets the saved register
context for user mode, specifically setting the initial user stack pointer and program
ccunter: The loader had written the initial program counter in the file header. The
kernel takes special action for setuid programs and for process tracing, covered in
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the next section and in Chapter 11, respectively. Finally, it invokes algorithm iput,
releasing the inode that was originally allocated in the namei algorithm at the
beginning of exec. The use of namei and iput in exec corresponds to their use in
opening and closing a file; the state of a file during the exec call resembles that of
an open file except for the absence of a file table entry. When the-“process
“returns” from the exec system call, it executes the code of the new program.
However, it is the same process it was before the exec; its process ID number does
not change, nor does its position in the process hierarchy. Only the user-level
context changes.

main(

int status;
if (fork(Q) == 0)

execl(“/bin/date”, “date”, 0);
wait(&status);

Figure 7.21. Use of Exec

For example, the program in Figure 7.21 creates a child process that invokes
the exec system call. Immediately after the parent and child processes return from
fork, they execute independent copies of the program. When the child process is
about to invoke the exec call, its text region consists of the instructions for the
program, its data region consists of the strings “/bin/date” and *“date”, and its
stack contains the stack frames the process pushed to get to the exec call. The
kernel finds the file “/bin/date” in the file system, finds that all users can execute
it, and determines that it is an executable load module. By convention, the first
parameter of the argument list argv to exec is the (last component of the) path
name of the executable file. The process thus has access to the program name at
user-level, sometimes a useful feature The kernel then copies the strings
“/bin/date” and “date” to an internal holding area and frees the text, data, and
stack regions occupied by the process. It allocates new text, data, and stack regions
for the process, copies the instruction section of the file “/bin/date” into the text
region, and copies the data section of the file into the data region. The kernel
reconstructs the original parameter list (here, the character string “date”) and puts
it in the stack region. After the exec call, the child process no longer executes the

3. On System V for instance, the standard programs for renaming a file (mv), copying a file (cp), and
linking a file (/n) are one executable filé because they execute similar code. The process looks at the
name the user used to invoke it to determine what it should do.
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old program but executes the program “date”: When the ‘“date” program
completes, the parent process receives its exit status from the wait call.

Until now, we have assumed that process text and data occupy separate sections
of an executable program and, hence, separate regions of a running process. There
are two advantages for keeping text and data separate: protection and sharing. If
text and data were in the same region, the system could not prevent a process from
overwriting its instructions, because it would not know which addresses contain
instructions and which contain data. But if text and data are in separate regions,
the kernel can set up hardware protection mechanisms to prevent processes from
overwriting their text space. If a process mistakenly attempts to overwrite its text
space, it incurs a protection fault that typically results in termination of the
process.

#tinclude <signal.h>
main()
int i, *ip;
extern f(), sigcatch();
ip = (int *)f; /* assign ip to address of function f */
for i=0; i< 20; i++)
signal(i, sigcatch);
*ip=1, /* attempt to overwrite address of f */
printf("after assign to ip\n");
fO;
}
fO
{
)
sigcatch(n)
int n;
{
printf("caught sig %d\n", n);
exit(1);
}

Figure 7.22. Example of Program Overwriting its Text

For example, the program in Figure 7.22 assigns the pointer ip to the address of
the function f and then arranges to catch all signals. If the program is compiled so
that text and data are in separate regions, the process executing the program incurs
a protection fault when it attempts to write the contents of ip, because it is writing
its write-protected text region. The kernel sends a SIGBUS signal to the process on
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an AT&T 3B20 computer, although other implementatious may send other signals.
The process catches the signal and exits without executing the print statement in
main. However, if the program were compiled so that the program text and data
were part of one region (the data region), the kernel would not realize that a
process was overwriting the address of the function f. The address of f contains the
value 1! The process executes the print statement in main but executes an illegal
instruction' when it calls f. The kernel sends it a SIGILL signal, and the process
exits.

Having instructions and data in separate regions makes it easier to protect
against addressing errors. Early versions of the UNIX system allowed text and
data to be in the same region, however, because of process size limitations imposed
by PDP machines: Programs were smaller and required fewer “segmentation”
registers if text and data occupied the same region. Current versions of the system
do not have such stringent size limitations on processes, and future compilers will
not support the option to load text and data in one region.

The second advantage of having separate regions for text and data is to allow
sharing of regions. If a process cannot write its text region, its text does not change
from the time the kernel loads it from the executable file. If several processes
execute a file they can, therefore, share one text region, saving memory. Thus,
when the kernel allocates a text region for a process in exec, it checks if the
executable file allows its text to be shared, indicated by its magic number. If so, it
follows algorithm xalloc to find an existing region for the file text or to assign a
new one (see Figure 7.23).

In xalloc, the kernel searches the active region list for the file’s text region,
identifying it as the one whose inode pointer matches the inode of the executable
file. If no such region exists, the kernel allocates a new region (algorithm
allocreg), attaches it to the process (algorithm attachreg), loads it into memory
(algorithm loadreg), and changes its protection to read-only. The latter step
causes a memory protection fault if a process attempts to write the text region. If,
in searching the active region list, the kernel locates a region that contains the file
text, it makes sure that the region is loaded into memory (it sleeps otherwise) and
attaches it to the process. The kernel unlocks the region at the conclusion of xalloc
and decrements the region count later, when it executes detachreg during exit or
exec. Traditional implementations of the system contain a text table that the
kernel manipulates in the way just described for text regions. The set of text
regions can thus be viewed as a modern version of the old text table.

Recall that when allocating a region for the first time in allocreg (Section
6.5.2), the kernel increments the reference count of the inode associated with the
region, after it had incremented the reference count in namei (invoking iget) at the
‘beginning of exec. Because the kernel decrements the reference count once in iput
at the end of exec, the inode reference count of a (shared text) file being executed
is at least 1: Therefore, if a process unlinks the file, its contents remain intaci.
The kernel no longer needs the file after loading it into memory, but it needs the
pointer to the in-core inode in the region table to identify the file that correspn-s
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algorithm xalloc /* allocate and initialize text region */
input: inode of executable file
output: none
{
if (executable file does not have separate tex: region)
return;
if (text region associated with text of inode)
{
/* text region already exists...attach to it */
lock region;
while (contents of region not ready y